試題分析:事件A與B互斥,事件A與B不一定對立;反之事件A與B對立,一定有事件A與B互斥.所以“事件A與B互斥”是“事件A與B對立”的必要不充分條件.所以命題①正確.由am
2<bm
2知m
2>0,不等式兩邊同乘以

得,a<b,反之,若a<b,則取m
2=0時不能得到am
2<bm
2,故am
2<bm
2是a<b的充分不必要條件,故命題②不正確.原命題:矩形的兩條對角線相等.則其否命題為:若四邊形不是矩形,則其對角線不相等.此否命題為假命題,如等腰梯形不是矩形,但其對角線相等,故命題③正確.在△ABC中,若∠B=60°,因為∠A+∠B+∠C=180°,得∠A+∠C=180°-∠B=180°-60°=120°,所以2∠B=∠A+∠C,所以∠A,∠B,∠C三個角成等差數列.若∠A,∠B,∠C三個角成等差數列,可設公差為d,則∠A=∠B-d,∠C=∠B+d,由∠A+∠B+∠C=180°,得∠B-d+∠B+∠b+d=180°,∴∠B=60°.所以在△ABC中,“∠B=60°”是∠A,∠B,∠C三個角成等差數列的充要條件,故命題④正確.在△ABC中,若sinA=cosB,則sinA=sin(90°-B),所以A=90°-B或A+90°-B=180°,所以A+B=90°或A-B=90°,則△ABC不一定為直角三角形,故命題⑤不正確.故答案為②⑤.
點評:最常用的方法是定義法,即“若p⇒q,則p是q的充分條件”;“若q⇒p,則p是q成立的必要條件”;“若p?q,則p是q的充要條件”