日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知向量=(cosx,2cosx),向量=(2cosx,sin(π-x)),若f(x)=+1.
(I)求函數f(x)的解析式和最小正周期;
(II)若,求f(x)的最大值和最小值.
【答案】分析:(I)先根據向量的數量積運算表示出函數f(x)的解析式,然后根據二倍角公式和兩角和與差的公式進行化簡為y=Asin(wx+ρ)+b的形式,再由T=可確定最小正周期.
(II)先根據x的范圍求出2x+的范圍,再由正弦函數的性質可求其最值,進而可得到答案.
解答:解:(I)∵
∴f(x)=+1=2cos2x+2cosxsin(π-x)+1
=1+cos2x+2sinxcosx+1
=cos2x+sin2x+2
=
∴函數f(x)的最小正周期
(II)∵

∴當,即時,f(x)有最大值
,即時,f(x)有最小值1.
點評:本題主要考查向量的數量積運算、兩角和與差的正弦公式的應用和正弦函數的最值.三角函數與向量的綜合題是高考的熱點問題,一定要重視.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知向量
a
=(cosx,sinx),
b
=(-cosx,cosx),
c
=(-1,0).
(Ⅰ)若x=
π
6
,求向量
a
c
的夾角;
(Ⅱ)當x∈[
π
2
8
]
時,求函數f(x)=2
a
b
+1
的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
m
=(2sinx-cosx,sinx),
n
=(cosx-sinx,0)
,且函數f(x)=(
m
+2
n
)
m.

(Ⅰ)求函數f(x)的最小正周期;
(Ⅱ)將函數f(x)向左平移
π
4
個單位得到函數g(x),求函數g(x)的單調遞增區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
m
=(
3
sinx+cosx,1),
n
=(
1
2
f(x),cosx),
m
n

(I)求f(x)的單調增區間及在[-
π
6
π
4
]
內的值域;
(II)已知A為△ABC的內角,若f(
A
2
)=1+
3
,a=1,b=
2
,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
m
=(
3
sinx+cosx,1),
n
=(cosx,-f(x))
,且
m
n

(1)求f(x)的單調區間;
(2)當x∈[0, 
π
2
]
時,函數g(x)=a[f(x)-
1
2
]+b
的最大值為3,最小值為0,試求a、b的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
m
=(
3
sinx-cosx,1)
n
=(cosx,
1
2
)
,若f(x)=
m
n

(Ⅰ) 求函數f(x)的最小正周期;
(Ⅱ) 已知△ABC的三內角A、B、C的對邊分別為a、b、c,且a=3,f(
A
2
+
π
12
)=
3
2
(A為銳角),2sinC=sinB,求A、c、b的值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 在线一区观看 | 日本一本视频 | 热99这里只有精品 | 国产一区二区三区免费在线 | 久久91| 国产福利久久 | 日韩在线观看一区二区三区 | 91精品综合久久久久久五月天 | 久久久精品影院 | 国产成人精品一区二三区四区五区 | 一 级做人爱全视频在线看 一级黄色裸体片 | 欧美在线网站 | 久久精品欧美 | 久久精品毛片 | 亚洲一区二区日韩 | 情趣视频在线免费观看 | 久久国产一区二区 | 天天干夜夜拍 | 性色浪潮| 免费国产视频在线观看 | 亚洲一级电影 | 成人亚洲视频 | 男女视频在线 | 国产精品一区二区在线观看免费 | 欧美性猛交一区二区三区精品 | 中文字幕亚洲电影 | 久久久网站| 久久国产精品99国产 | 国产精品资源 | 久久精品一区二区三区四区 | 黄色小视频网 | 日韩精品久 | 亚洲精品9999 | 在线看欧美 | 品久久久久久久久久96高清 | 午夜影视剧场 | 五月香婷婷 | 四虎影视免费观看 | 亚洲日本乱码一区二区三区 | 欧美精产国品一二三区 | 91人人人 |