日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知向量
m
=(2sinx-cosx,sinx),
n
=(cosx-sinx,0)
,且函數f(x)=(
m
+2
n
)
m.

(Ⅰ)求函數f(x)的最小正周期;
(Ⅱ)將函數f(x)向左平移
π
4
個單位得到函數g(x),求函數g(x)的單調遞增區間.
分析:(Ⅰ)先求出
m
+2
n
的坐標,再根據函數f(x)=(
m
+2
n
)
m
,利用兩個向量數量積公式和三角函數的恒等變換求得函數的解析式為
2
sin(2x-
π
4
),由此求得函數的最小正周期.
(Ⅱ)根據函數y=Asin(ωx+∅)的圖象變換規律求得g(x)=
2
sin(2x+
π
4
),令2kπ-
π
2
≤2x+
π
4
≤2kπ+
π
2
,k∈z可得 x的范圍,即可求得函數的增區間.
解答:解:(Ⅰ)∵
m
+2
n
=(cosx,sinx),
∴函數f(x)=(
m
+2
n
)
m
=(cosx,sinx)•(2sinx-cosx,sinx)=2sinxcosx-cos2x+sin2x=
2
sin(2x-
π
4
),
函數f(x)=(
m
+2
n
)
m
 的最小正周期等于
2
=π.
(Ⅱ)將函數f(x)的圖象向左平移
π
4
個單位得到函數y=
2
sin[2(x+
π
4
)-
π
4
]=
2
sin(2x+
π
4
)的圖象,故 g(x)=
2
sin(2x+
π
4
).
令2kπ-
π
2
≤2x+
π
4
≤2kπ+
π
2
,k∈z可得  kπ-
8
≤x≤kπ+
π
8
,k∈z,
故函數的增區間為[kπ-
8
,kπ+
π
8
],k∈z.
點評:本題主要考查三角函數的恒等變換及化簡求值,兩個向量數量積公式,函數y=Asin(ωx+∅)的圖象變換規律,正弦函數的周期性和單調性,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知向量
m
=(2sinx,2cosx),
n
=(
3
cosx,cosx),f(x)=
m
n
-1

(1)求函數f(x)的最小正周期和單調遞增區間;
(2)將函數y=f(x)的圖象上各點的縱坐標保持不變,橫坐標先縮短到原來的
1
2
,把所得到的圖象再向左平移
π
6
單位,得到函數y=g(x)的圖象,求函數y=g(x)在區間[0,
π
8
]
上的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
m
=(-2sinx,cosx)
n
=(
3
cosx,2cosx)
,函數f(x)=1-
m
n

(1)求f(x)的最小正周期; 
(2)當x∈[0,π]時,求f(x)的單調遞增區間;
(3)說明f(x)的圖象可以由g(x)=sinx的圖象經過怎樣的變換而得到.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
m
=(-2sinx,cosx)
n
=(
3
cosx,2cosx)
,函數f(x)=1-
m
n

(1)求f(x)的最小正周期; 
(2)當x∈[0,π]時,求f(x)的單調遞增區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•香洲區模擬)已知向量
m
=(-2sinx,-1),
n
=(-cosx,cos2x)
,定義f(x)=
m
n

(1)求函數f(x)的表達式,并求其單調增區間;
(2)在銳角△ABC中,角A、B、C對邊分別為a、b、c,且f(A)=1,bc=8,求△ABC的面積.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 成人综合av| 精品乱码一区二区 | 蜜桃视频在线播放 | 婷婷av在线 | 欧美日韩精品免费观看视频 | 成人免费高清视频 | 伊人欧美在线 | 久久精品免费观看 | 国产精品一区免费 | 久久com | 亚洲一区二区三区免费在线观看 | 亚洲欧美中文日韩v在线观看 | 超碰av在线 | 日本久久精品一区二区 | 国产在线观看一区 | 青草视频在线观看免费 | 亚洲一区二区三区四区五区中文 | 久久久国产精品一区 | 男女羞羞视频免费看 | 欧美成人h版在线观看 | 国产欧美一区二区精品忘忧草 | 成人高清在线观看 | 国产精品久久久久久久久免费高清 | 国产精品一区二区三区网站 | 亚洲成人1区 | 国产女人高潮大叫a毛片 | 91免费看片神器 | 91精品国产乱码久久久久久久久 | 在线观看www | 亚洲一区欧美日韩 | av 一区二区三区 | 精品一区二区久久 | 欧美日韩视频一区二区 | 欧美高清在线 | 国产亚洲综合精品 | 欧美久久综合 | 久在线视频| h视频在线免费观看 | 成人视屏在线观看 | 欧美一区二区激情三区 | 日本三级黄色录像 |