(09年湖南十二校文)(13分)
設函數
(
>0)
(Ⅰ)若
在
時,有極值
,求
的單調區間。
(Ⅱ)證明:
的圖像上存在著與直線
垂直的切線。
解析:(Ⅰ)
由題意可知
即
……………1分
解得
舍去) ………………2分
此時,
令
>0得
>1或
<
1
<0得
1<
<1 ………………………3分
所以
的遞增區間為(
∞,
1)、(1,+∞)
遞減區間為(
1,1) ………………………4分
(Ⅱ)證明:①當
時,直線
,則
圖像上與
垂直的切線斜率為0.
令
>0恒成立,方程有解。 …………5分
②當
時,直線
的斜率為
,則與
垂直的切線斜率為
令
即
>0恒成立,方程有解。
綜上所述:
的圖像上存在著與
垂直的直線。 ……………7分
(Ⅲ)由題意可知,
為
的兩根
………8分
從而
……………………………9分
由
得 0<
…………………………………10分
設
令
則
……………………………………11分
故
在
遞增,
遞減, 從而
在
上的極大值為
即最大值為
,且最小值為0,則
科目:高中數學 來源: 題型:
(09年湖南十二校文)(13分)
對于數列
定義數列
為
的“和數列”
(1)若
的“和數列”的通項為2n+1,
,求
,并寫出
的通項公式。(不必證明)
(2)若
的“和數列”的通項為
,數列
滿足
,求
查看答案和解析>>
科目:高中數學 來源: 題型:
(09年湖南十二校文)(12分)某高等學校自愿獻血的50位學生的血型分布的情況如下表:
血型 | A | B | AB | O |
人數 | 20 | 10 | 5 | 15 |
(Ⅰ)從這50位學生中隨機選出2人,求這2人血型都為A型的概率;
查看答案和解析>>
科目:高中數學 來源: 題型:
(09年湖南十二校文)對于區間上有意義的兩個函數
與
,如果對于區間
中的任意數
均有
,則稱函數
與
在區間
上是密切函數,
稱為密切區間.若
與
在某個區間上是“密切函數”,則它的一個密切區間可能是( )
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com