日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=|x-1|+|x-2|.
(1)求函數f(x)的最小值;
(2)(文科)已知k為非零常數,若不等式|t-k|+|t+k|≥|k|f(x)對于任意t∈R恒成立,求實數x的取值集合;
(3)(理科)設不等式f(x)≤2的解集為集合A,若存在x∈A,使得x2+(1-a)x=-9求實數a的最小值.
【答案】分析:(1)先對函數進行化簡可得f(x)=,結合函數的性質可求函數的最小值
(2)由|t-k|+|t+k|≥|(t-k)-(t+k)|=2|k|
(|t-k|+|t+k|)min=2|k|
|t-k|+|t+k|≥|k|f(x)對于任意t∈R恒成立轉化為f(x)≤2  即|x-1|+|x-2|≤2,解絕對值不等式可得x的取值集合
(3)由(1)可得,由x2+(1-a)x=-9得
結合函數上單調性 及  從而有,解不等式可求a的取值范圍,進而可求實數a的最小值
解答:解:(1)f(x)=
∴x>2時,2x-3>1;x<1時,3-2x>1;1≤x≤2時,f(x)=1
∴f(x)min=1
(2)∵|t-k|+|t+k|≥|(t-k)-(t+k)|=2|k|
(|t-k|+|t+k|)min=2|k|
問題轉化為f(x)≤2  即|x-1|+|x-2|≤2
顯然由 得
 得
∴實數x的取值集合為
(3),由x2+(1-a)x=-9得
由函數上單調遞減∴ 

 故實數的最小值為
點評:(1)利用絕對值的幾何意義是解決本題的關鍵(2)不等式的恒成立往往轉化為求解函數的最值問題,(3)單調性的應用是解決此類問題的重要方法
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數f(x)的最小正周期;
(2)若函數y=f(2x+
π
4
)
的圖象關于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)為定義在R上的奇函數,且當x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達式;
(2)若關于x的方程f(x)-a=o有解,求實數a的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調遞增區間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區間(1,3)上總不單調,求實數m的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數列{
1
f(n)
}
的前n項和為Sn,則S2010的值為(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)是定義在區間(-1,1)上的奇函數,且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數a的取值范圍是
 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美日韩精选 | 狠狠综合久久 | 久久精品国产亚洲精品 | 99久久国产 | 亚洲国产午夜视频 | 欧美日韩精品免费 | 欧美日韩久久精品 | 欧美日韩在线一区二区 | 91精品国产91久久久久久不卡 | 亚洲一区成人 | 精品成人 | 国产精品一区二区在线 | 国产91亚洲精品 | 嫩草研究院在线观看入口 | 热久久久| 97国产在线 | 国产传媒在线视频 | 欧美激情视频一区二区三区在线播放 | 日韩中文字幕网 | 中文无吗| 成人天堂资源www在线 | 99re在线观看| av 一区二区三区 | 一区二区三区四区日韩 | 久久久久久九九九九 | 在线观看欧美一区二区三区 | 久久99国产精品 | 欧洲美女7788成人免费视频 | 国产精品视频免费 | 日韩欧美高清dvd碟片 | av中文字幕在线播放 | 久久久麻豆 | 亚洲九九 | 欧美激情小视频 | 久久精品色欧美aⅴ一区二区 | 国内在线精品 | 国产高清视频在线观看 | 91色视频在线观看 | 国产精品亚洲一区 | 一级黄色录象片 | 国产高清在线 |