【題目】已知函數.
(1)求函數的單調區間;
(2)若關于的方程
有實數解,求實數
的取值范圍;
(3)求證:.
科目:高中數學 來源: 題型:
【題目】央視傳媒為了解央視舉辦的“朗讀者”節目的收視時間情況,隨機抽取了某市名觀眾進行調查,其中有
名男觀眾和
名女觀眾,將這
名觀眾收視時間編成如圖所示的莖葉圖(單位:分鐘),收視時間在
分鐘以上(包括
分鐘)的稱為“朗讀愛好者”,收視時間在
分鐘以下(不包括
分鐘)的稱為“非朗讀愛好者”.規定只有女“朗讀愛好者”可以參加央視競選.
(1)若采用分層抽樣的方法從“朗讀愛好者”和“非朗讀愛好者”中隨機抽取名,再從這
名觀眾中任選
名,求至少選到
名“朗讀愛好者”的概率;
(2)若從所有的“朗讀愛好者”中隨機抽取名,求抽到的
名觀眾中能參加央視競選的人數
的分布列及其數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校從高一年級學生中隨機抽取40名學生,將他們的期中考試數學成績(滿分100分,成績均為不低于40分的整數)分成六段:,
,
,
,
,
,
后得到如圖的頻率分
布直方圖.
(1)求圖中實數的值;
(2)若該校高一年級共有學生1000人,試估計該校高一年級期中考試數學成績不低于60分的人數.
(3)若從樣本中數學成績在,
與
,
兩個分數段內的學生中隨機選取2名學生,試用列舉法求這2名學生的數學成績之差的絕對值大于10的槪率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018 年1月16日,由新華網和中國財經領袖聯盟聯合主辦的2017中國財經年度人物評選結果揭曉,某知名網站財經頻道為了解公眾對這些年度人物是否了解,利用網絡平臺進行了調查,并從參與調查者中隨機選出人,把這
人分為
兩類(
類表示對這些年度人物比較了解,
類表示對這些年度人物不太了解),并制成如下表格:
年齡段 |
|
|
|
|
人數 | ||||
|
(1)若按照年齡段進行分層抽樣,從這人中選出
人進行訪談,并從這
人中隨機選出兩名幸運者給予獎勵.求其中一名幸運者的年齡在
歲~
歲之間,另一名幸運者的年齡在
歲~
歲之間的概率;(注:從
人中隨機選出
人,共有
種不同選法)
(2)如果把年齡在 歲~
歲之間的人稱為青少年,年齡在
歲~
歲之間的人稱為中老年,則能否在犯錯誤的概率不超過
的前提下認為青少年與中老年人在對財經年度人物的了解程度上有差異?
參考數據:
,其中
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面于直線AB,且ABBP
2,AD=AE=1,AE⊥AB,且AE∥BP.
(1)求平面PCD與平面ABPE所成的二面角的余弦值;
(2)線段PD上是否存在一點N,使得直線BN與平面PCD所成角的正弦值等于?若存在,試確定點N的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在棱長為1正方體中,點
,
分別為邊
,
的中點,將
沿
所在的直線進行翻折,將
沿
所在直線進行翻折,在翻折的過程中,下列說法錯誤的是( )
A. 無論旋轉到什么位置,、
兩點都不可能重合
B. 存在某個位置,使得直線與直線
所成的角為
C. 存在某個位置,使得直線與直線
所成的角為
D. 存在某個位置,使得直線與直線
所成的角為
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線:
(
為參數)和圓
的極坐標方程:
.
(1)分別求直線和圓
的普通方程并判斷直線
與圓
的位置關系;
(2)已知點,若直線
與圓
相交于
,
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示的多面體中, AC⊥BC,四邊形ABED是正方形,平面ABED⊥平面ABC,點F,G,H分別為BD,EC,BE的中點,求證:
(1) BC⊥平面ACD
(2)平面HGF∥平面ABC.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com