【題目】已知在中,角
的對邊分別是
,且有
.
(1)求;
(2)若,求
面積的最大值.
【答案】(1) ;(2)
.
【解析】試題分析:(Ⅰ)已知等式利用正弦定理化簡,利用兩角和與差的正弦函數公式及誘導公式,結合sinC不為0求出cosC的值,即可確定出C的度數;
(2)利用余弦定理列出關系式,結合不等式可得ab≤9,進而求得面積的最大值.
試題解析:∵在△ABC中,0<C<π,∴sinC≠0
已知等式利用正弦定理化簡得:2cosC(sinAcosB+sinBcosA)=sinC,
整理得:2cosCsin(A+B)=sinC,
即2cosCsin(π-(A+B))=sinC
2cosCsinC=sinC
∴cosC=,
C∈(0,π).
∴C=.
(2)由余弦定理可得:9=c2=a2+b2-2abcosC≥2ab-ab=ab,
可得ab≤9,
S=absinC≤
當且僅當a=b=3時取等號
∴△ABC面積的最大值
科目:高中數學 來源: 題型:
【題目】某市政府為了節約生活用電,計劃在本市試行居民生活用電定額管理,即確定一個居民月用電量標準,用電量不超過
的部分按平價收費,超出
的部分按議價收費.為此,政府調查了100戶居民的月平均用電量(單位:度),以
,
,
,
,
,
,
分組的頻率分布直方圖如圖所示.
(1)求直方圖中的值;
(2)求月平均用電量的眾數和中位數;
(3)如果當地政府希望使左右的居民每月的用電量不超出標準,根據樣本估計總體的思想,你認為月用電量標準
應該定為多少合理?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三棱柱中,底面
為正三角形,
底面
,且
,
是
的中點.
(1)求證: 平面
;
(2)求證:平面平面
;
(3)在側棱上是否存在一點
,使得三棱錐
的體積是
?若存在,求出
的長;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若平面點集滿足:任意點
,存在
,都有
,則稱該點集
是“
階聚合”點集。現有四個命題:
①若,則存在正數
,使得
是“
階聚合”點集;
②若,則
是“
階聚合”點集;
③若,則
是“2階聚合”點集;
④若是“
階聚合”點集,則
的取值范圍是
.
其中正確命題的序號為( )
A. ①④ B. ②③ C. ①② D. ③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱中,
底面
,
,
,
,
是棱
上一點.
(I)求證: .
(II)若,
分別是
,
的中點,求證:
平面
.
(III)若二面角的大小為
,求線段
的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知過點A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點.
(1)求k的取值范圍;
(2)若=12,其中O為坐標原點,求|MN|.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直角坐標系中,橢圓
的上焦點為
,橢圓
的離心率為
,且過點
.
(1)求橢圓的方程.
(2)設過橢圓的上頂點
的直線
與橢圓
交于點
(
不在
軸上),垂直于
的直線與
交于點
,與
軸交于點
,若
,且
,求直線
的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com