日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
(2009•天門模擬)已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=
π2
,AB=BC=2AD=4,E、F分別是AB、CD上的點,EF∥BC,AE=x,G是BC的中點.沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF(如圖).
(Ⅰ)當x=2時,求證:BD⊥EG;
(Ⅱ)若以F、B、C、D為頂點的三棱錐的體積記為f(x),求f(x)的最大值.
分析:(1)作DH⊥EF于H,連BH,GH.由面面垂直性質定理,證出DH⊥平面EBCF,從而得到EG⊥DH.由正方形BGHE中,EG⊥BH且BH∩DH=H,可得EG⊥平面DBH,從而證出BD⊥EG;
(2)由面面垂直性質定理證出AE⊥面EBCF,結合(Ⅰ)知AE
.
GH,可得VF-BCD=
1
3
S△BFC•DH
=
1
3
S△BFC•AE
,因此f(x)=-
2
3
(x-2)2+
8
3
,利用二次函數的圖象與性質可得當x=2時,即AE=2時函數有最大值為
8
3
解答:解:(Ⅰ)作DH⊥EF于H,連BH,GH
∵平面AEFD⊥平面EBCF,平面AEFD∩平面EBCF=EF,DH⊥EF
∴DH⊥平面EBCF
∵EG?平面EBCF,∴EG⊥DH
又∵四邊形BGHE為正方形,∴EG⊥BH
∵BH∩DH=H,∴EG⊥平面DBH
∵BD?平面DBH,∴EG⊥BD.
(Ⅱ)∵AE⊥EF,面AEFD⊥面EBCF,面AEFD∩面EBCF=EF
∴AE⊥面EBCF
由(Ⅰ)知DH⊥平面EBCF,可得AE
.
GH
∴f(x)=VA-BFC=
1
3
S△BFC•DH

=
1
3
S△BFC•AE
=
1
3
1
2
•4•(4-x)x
=-
2
3
(x-2)2+
8
3
8
3

因此,當且僅當x=2時,f(x)有最大值為
8
3
點評:本題給出平面圖形的翻折問題,在所得幾何體中證明線線垂直并求三棱錐體積的最大值,著重考查了空間線面垂直、面面垂直的判定與性質、錐體體積和二次函數的圖象與性質等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2009•天門模擬)已知t>1,且x=
t+1
-
t
,y=
t
-
t-1
,則x,y之間的大小關系是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•天門模擬)以-24為首項的等差數列{an},當且僅當n=10時,其前n項和最小,則公差d的取值范圍是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•天門模擬)已知兩點A(-2,0),B(0,2),點P是曲線C:
x=1+cosa
y=sina
上任意一點,則△ABP面積的最小值是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•天門模擬)關于實數x的不等式|1-
1
x
|>1的解集是
(-∞,0)∪(0,
1
2
(-∞,0)∪(0,
1
2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•天門模擬)在△ABC中,
AB
=(1,  2)
AC
=(4x,  3x)
,其中x>0,△ABC的面積為
5
4
,則實數x的值為
1
2
1
2

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 综合网视频 | 久久9色| 成人av网站在线观看 | 中文字幕av一区二区 | 精品国产乱码久久久久久1区2区 | 草草视频在线播放 | 日韩欧美一区二区三区免费观看 | www.4虎| 五月香婷婷 | 国产精品一区二区三区免费观看 | 一区二区三区观看视频 | 夜夜艹| 91精品国产91久久久久久蜜臀 | 国产精品一区在线看 | 久久精品国产久精国产 | 国产一区二区av | 国产精品1区2区3区 午夜视频网站 | 一区二区精品 | 日韩色综合 | 欧美中文在线 | 爱爱免费视频网站 | 精品一区二区三区在线观看 | 天堂在线精品视频 | 国产一区在线免费 | 又爽又大又黄a级毛片在线视频 | 9999在线视频 | 91精品国产乱码久久久久久久久 | 中国一级毛片 | 国产天堂一区二区三区 | 日本不卡在线 | 亚洲一区亚洲二区 | 日韩一区二区在线观看 | 99精品电影| 亚洲第一区国产精品 | 巨大荫蒂视频欧美大片 | 日韩一级精品视频在线观看 | 日韩午夜在线视频 | 夜夜爽99久久国产综合精品女不卡 | 精品一区二区免费视频 | 欧美成人精品在线观看 | 国产精品2区 |