【題目】數(shù)列的前
項和記為
,
,點
在直線
上,
.
(1)求數(shù)列的通項公式;
(2)設(shè),
,
是數(shù)列
的前
項和,求
.
【答案】(1);(2)
.
【解析】試題分析:(1)由在直線
上可得,
,所以
,兩式相減得
為等比數(shù)列,從而得出
的通項公式;(2)求出
,利用分組求和法以及等差數(shù)列的求和公式與等比數(shù)列的求和公式可得出
.
試題解析:(1)由題知,所以
,兩式相減得
,又
,
所以是以1為首項,4為公比的等比數(shù)列.
(2),
,
所以
.
【方法點晴】本題主要考查等比數(shù)列的定義與通項、等差數(shù)列的求和公式與等比數(shù)列的求和公式以及利用“分組求和法”求數(shù)列前項和,屬于中檔題. 利用“分組求和法”求數(shù)列前
項和常見類型有兩種:一是通項為兩個公比不相等的等比數(shù)列的和或差,可以分別用等比數(shù)列求和后再相加減;二是通項為一個等差數(shù)列和一個等比數(shù)列的和或差,可以分別用等差數(shù)列求和、等比數(shù)列求和后再相加減.
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足
,
,設(shè)
.
(1)求;
(2)判斷數(shù)列是否為等比數(shù)列,并說明理由;
(3)求的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一條光線經(jīng)過P(2,3)點,射在直線l:x+y+1=0上,反射后穿過點Q(1,1).
(1)求入射光線的方程;
(2)求這條光線從P到Q的長度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列的前
項和記為
,
,點
在直線
上,
.
(1)求數(shù)列的通項公式;
(2)設(shè),
,
是數(shù)列
的前
項和,求
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)若對任意的 恒成立,求實數(shù)
的最小值.
(2)若 且關(guān)于
的方程
在
上恰有兩個不相等的實數(shù)根,求實數(shù)
的取值范圍;
(3)設(shè)各項為正的數(shù)列 滿足:
求證:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知具有相關(guān)關(guān)系的兩個變量之間的幾組數(shù)據(jù)如下表所示:
(1)請根據(jù)上表數(shù)據(jù)在網(wǎng)格紙中繪制散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于
的線性回歸方程
,并估計當
時,
的值;
(3)將表格中的數(shù)據(jù)看作五個點的坐標,則從這五個點中隨機抽取2個點,求這兩個點都在直線的右下方的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知:三棱錐中,側(cè)面
垂直底面,
是底面最長的邊;圖1是三棱錐
的三視圖,其中的側(cè)視圖和俯視圖均為直角三角形;圖2是用斜二測畫法畫出的三棱錐
的直觀圖的一部分,其中點
在
平面內(nèi).
(Ⅰ)請在圖2中將三棱錐的直觀圖補充完整,并指出三棱錐
的哪些面是直角三角形;
(Ⅱ)設(shè)二面角的大小為
,求
的值;
(Ⅲ)求點到面
的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)在R上可導,其導函數(shù)為f′(x),且函數(shù)y=(1-x)f′(x)的圖像如圖所示,則下列結(jié)論中一定成立的是( )
A. 函數(shù)f(x)有極大值f(2)和極小值f(1) B. 函數(shù)f(x)有極大值f(-2)和極小值f(1)
C. 函數(shù)f(x)有極大值f(2)和極小值f(-2) D. 函數(shù)f(x)有極大值f(-2)和極小值f(2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com