日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
如圖,O是△ABC外任一點,若,求證:G是△ABC重心(即三條邊上中線的交點).

【答案】分析:由題意O是△ABC外任一點,由,利用向量的減法可以等價于:,再有等價條件,利用向量的平行四邊形法則及平面圖形知識即可求證.
解答:證明:由????
由題意畫出簡圖為:
由于?
在圖形中,利用平行四邊行法則及兩向量的加法原理可知:就是以GA,GB為兩相鄰邊的平行四邊形的對角線GD,
由于四邊形GADB為平行四邊形,所以GD平分AB,即:,所以,∴
又GD,AB平分,所以點G在三角形ABC的邊AB的中線上,
同理點G應該在BC邊的中線上,利用重心的定義可知G是△ABC重心(即三條邊上中線的交點).
點評:此題考查了三角形重心的定義,向量的加法,減法及平行四邊行法則.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,⊙O是Rt△ABC的外接圓,∠ABC=90°,點P是圓外一點,PA切⊙O于點A,且PA=PB.
(1)求證:PB是⊙O的切線;
(2)已知PA=
3
,BC=1,求⊙O的半徑.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,O是△ABC外任一點,若
OG
=
1
3
(
OA
+
OB
+
OC
)
,求證:G是△ABC重心(即三條邊上中線的交點).
精英家教網

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網在△ABC中,a,b,c分別為內角A,B,C所對的邊,且滿足
sinB+sinC
sinA
=
2-cosB-cosC
cosA

(1)證明:b+c=2a;
(2)如圖,點O是△ABC外一點,設∠AOB=θ(0<θ<π),OA=2OB=2,當b=c時,求平面四邊形OACB面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,O是△ABC外任一點,若數學公式,求證:G是△ABC重心(即三條邊上中線的交點).

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 一级黄色录像免费观看 | www.久久久 | 久久激情网 | 三级免费网站 | 亚洲一区二区三区四区五区中文 | 日本aⅴ免费视频一区二区三区 | 欧美视频二区 | 色婷婷香蕉在线一区二区 | 欧美色性 | 亚洲高清不卡视频 | 欧美 日韩 国产 一区 | 欧美高清一区 | 亚洲人成中文字幕在线观看 | 亚洲精品福利 | 精品欧美一区二区三区久久久小说 | 免费特级黄毛片 | 国产亚洲成av人片在线观看桃 | 国产成人精品一区二区三区视频 | 国产一区二区三区四区在线观看 | 精品电影 | 一区二区精品视频 | 国产传媒在线 | 欧美日韩不卡 | 欧美久久久久 | 91中文字幕| 日韩中文在线 | 午夜不卡一区二区 | 欧美亚洲性视频 | 精品99久久 | 91精品国产一区二区三区 | 国产精品久久久久久久久久 | 国产一区二区三区四区在线观看 | 天天草天天插 | 精品免费视频一区二区 | 一级黄色片欧美 | 欧美精品三区 | 99久久久国产精品 | 91久久久久久久 | 粉嫩高清一区二区三区精品视频 | 国产 欧美 日韩 一区 | 粉嫩高清一区二区三区 |