【題目】如圖所示,四棱錐的底面是邊長(zhǎng)為2的正方形,平面
平面
,
,
.
(1)求證:平面平面
;
(2)設(shè)為
的中點(diǎn),問邊
上是否存在一點(diǎn)
,使
平面
,并求此時(shí)點(diǎn)
到平面
的距離.
【答案】(1)證明見解析;(2).
【解析】
(1)由平面平面
得出
平面
,
;從而證明
平面
,可得平面
平面
;
(2)當(dāng)為
的中點(diǎn)時(shí),
平面
,根據(jù)題意直線與平面平行的判定定理即可證明;再利用等積法求出點(diǎn)
到平面
的距離,即可得出點(diǎn)
到平面
的距離.
(1)證明:平面平面
,
,
且平面
,平面
平面
,
平面
,
因?yàn)?/span>平面
;
又,
因?yàn)?/span>平面
,
平面
,
平面
,
又平面
,
平面
平面
;
(2)解:當(dāng)為
的中點(diǎn)時(shí),
平面
;
證明如下:設(shè)的中點(diǎn)為
,連接
、
,
,且
,
,且
,
,且
,
四邊形
為平行四邊形;
,又
平面
,
平面
;
又,
,
,
;
,
,
;
設(shè)點(diǎn)到平面
的距離為
,
則,
解得,
平面
,
點(diǎn)
到平面
的距離為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱臺(tái)中,
,G,H分別為
,
上的點(diǎn),平面
平面
,
,
.
(1)證明:平面平面
;
(2)若,
,求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)又本l過拋物線C:y2=4x的焦點(diǎn)F,且與拋物線C交于M,N兩點(diǎn),且點(diǎn)M在x軸上方.
(1)若線段MN的垂直平分線交x軸于點(diǎn)Q,若|FQ|=8,求直線l的斜率;
(2)設(shè)點(diǎn)P(x0,0),若點(diǎn)M恒在以FP為直徑的圓外,求x0的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某地某月1日至15日的日平均溫度變化的折線圖,根據(jù)該折線圖,下列結(jié)論正確的是( )
A. 這15天日平均溫度的極差為
B. 連續(xù)三天日平均溫度的方差最大的是7日,8日,9日三天
C. 由折線圖能預(yù)測(cè)16日溫度要低于
D. 由折線圖能預(yù)測(cè)本月溫度小于的天數(shù)少于溫度大于
的天數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】微信運(yùn)動(dòng),是由騰訊開發(fā)的一個(gè)類似計(jì)步數(shù)據(jù)庫(kù)的公眾賬號(hào).用戶可以通過關(guān)注微信運(yùn)動(dòng)公眾號(hào)查看自己每天行走的步數(shù),同時(shí)也可以和其他用戶進(jìn)行運(yùn)動(dòng)量的或點(diǎn)贊.微信運(yùn)動(dòng)公眾號(hào)為了解用戶的一些情況,在微信運(yùn)動(dòng)用戶中隨機(jī)抽取了100名用戶,統(tǒng)計(jì)了他們某一天的步數(shù),數(shù)據(jù)整理如下:
| ||||||
| 5 | 20 | 50 | 15 | 5 | 5 |
(1)根據(jù)表中數(shù)據(jù),在如圖所示的坐標(biāo)平面中作出其頻率分布直方圖,并在縱軸上標(biāo)明各小長(zhǎng)方形的高;
(2)利用分層抽樣的方法,從步數(shù)在(萬步)中抽取7人,再?gòu)倪@7人中隨機(jī)抽取2人,求步數(shù)在
(萬步)的人恰有1人的概率;
(3)這100名用戶中,的用戶為男生,這些男生的步數(shù)超過1.2萬步的人為20人,是否有
的把握認(rèn)為運(yùn)動(dòng)步數(shù)超過1.2萬步與性別有關(guān)?
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某部影片的盈利額(即影片的票房收入與固定成本之差)記為,觀影人數(shù)記為
,其函數(shù)圖象如圖(1)所示.由于目前該片盈利未達(dá)到預(yù)期,相關(guān)人員提出了兩種調(diào)整方案,圖(2)、圖(3)中的實(shí)線分別為調(diào)整后
與
的函數(shù)圖象.
給出下列四種說法:
①圖(2)對(duì)應(yīng)的方案是:提高票價(jià),并提高成本;
②圖(2)對(duì)應(yīng)的方案是:保持票價(jià)不變,并降低成本;
③圖(3)對(duì)應(yīng)的方案是:提高票價(jià),并保持成本不變;
④圖(3)對(duì)應(yīng)的方案是:提高票價(jià),并降低成本.
其中,正確的說法是____________.(填寫所有正確說法的編號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在四邊形中,
,
,
,
.把
沿著
翻折至
的位置,
平面
,連結(jié)
,如圖2.
(1)當(dāng)時(shí),證明:平面
平面
;
(2)當(dāng)三棱錐的體積最大時(shí),求點(diǎn)
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),橢圓
的右焦點(diǎn)為
,過
的直線
與
相交于
兩點(diǎn),點(diǎn)
滿足
.
(1)當(dāng)的傾斜角為
時(shí),求直線
的方程;
(2)試探究在軸上是否存在定點(diǎn)
,使得
為定值?若存在,求出點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求曲線在點(diǎn)
處的切線方程;
(2)證明:在區(qū)間
上有且僅有
個(gè)零點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com