【題目】為了增強學(xué)生的環(huán)境意識,某中學(xué)隨機抽取了50名學(xué)生舉行了一次環(huán)保知識競賽,本次競賽的成績(得分均為整數(shù),滿分100分)整理,制成下表:
成績 | ||||||
頻數(shù) | 2 | 3 | 14 | 15 | 14 | 4 |
(1)作出被抽查學(xué)生成績的頻率分布直方圖;
(2)若從成績在中選一名學(xué)生,從成績在
中選出2名學(xué)生,共3名學(xué)生召開座談會,求
組中學(xué)生
和
組中學(xué)生
同時被選中的概率?
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在極坐標系中曲線C的極坐標方程為.
(1)求曲線C與極軸所在直線圍成圖形的面積;
(2)設(shè)曲線C與曲線ρsinθ=1交于A,B,求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)討論時,
的單調(diào)性、極值;
(2)求證:在(1)的條件下,;
(3)是否存在實數(shù)a,使的最小值是3,如果存在,求出a的值;若不存在,
請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次比賽中,某隊的六名隊員均獲得獎牌,共獲得4枚金牌2枚銀牌,在頒獎晚會上,這六名隊員與1名領(lǐng)隊排成一排合影,若兩名銀牌獲得者需站在領(lǐng)隊的同側(cè),則不同的排法共有______種.(用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F(0,1)為平面上一點,H為直線l:y=﹣1上任意一點,過點H作直線l的垂線m,設(shè)線段FH的中垂線與直線m交于點P,記點P的軌跡為Γ.
(1)求軌跡Γ的方程;
(2)過點F作互相垂直的直線AB與CD,其中直線AB與軌跡Γ交于點AB,直線CD與軌跡Γ交于點CD,設(shè)點M,N分別是AB和CD的中點.
①問直線MN是否恒過定點,如果經(jīng)過定點,求出該定點,否則說明理由;
②求△FMN的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,曲線
的參數(shù)方程為
(其中
為參數(shù)),以原點
為極點,以
軸非負半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(Ⅰ)求曲線的普通方程與曲線
的直角坐標方程;
(Ⅱ)設(shè)點,
分別是曲線
,
上兩動點且
,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱柱中,底面
是等腰梯形,
,頂點
在底面
內(nèi)的射影恰為點
.
(1)求證:平面
;
(2)若直線與底面
所成的角為
,求平面
與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,已知圓
:
,點
,
,點
在圓
上,
.
(1)求圓的方程;
(2)直線與圓
交于
,
兩點(
點在
軸上方),點
是拋物線
上的動點,點
為
的外心,求線段
長度的最大值,并求出當線段
長度最大時,
外接圓的標準方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國際上通常用年齡中位數(shù)指標作為劃分國家或地區(qū)人口年齡構(gòu)成的標準:年齡中位數(shù)在20歲以下為“年輕型”人口;年齡中位數(shù)在20~30歲為“成年型”人口;年齡中位數(shù)在30歲以上為“老齡型”人口.
如圖反映了我國全面放開二孩政策對我國人口年齡中位數(shù)的影響.據(jù)此,對我國人口年齡構(gòu)成的類型做出如下判斷:①建國以來直至2000年為“成年型”人口;②從2010年至2020年為“老齡型”人口;③放開二孩政策之后我國仍為“老齡型”人口.其中正確的是( )
A.②③B.①③C.②D.①②
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com