日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

1.函數(shù)$f(x)=\frac{bx+c}{{a{x^2}+1}}(a,b,c∈R)$是奇函數(shù),且f(-2)≤f(x)≤f(2),則a=$\frac{1}{4}$.

分析 由f(0)=0可求c,根據(jù)f(-2)≤f(x)≤f(2),利用基本不等式,即可得出結(jié)論.

解答 解:∵函數(shù)$f(x)=\frac{bx+c}{{a{x^2}+1}}(a,b,c∈R)$是奇函數(shù)且定義域內(nèi)有0
∴f(0)=0
解得c=0,故f(x)=$\frac{bx}{a{x}^{2}+1}$.
x>0,a>0,f(x)=$\frac{bx}{a{x}^{2}+1}$=$\frac{b}{ax+\frac{1}{x}}$≤$\frac{b}{2\sqrt{a}}$(ax=$\frac{1}{x}$時(shí)取等號)
∵f(-2)≤f(x)≤f(2),∴2a=$\frac{1}{a}$,∴a=$\frac{1}{4}$.
故答案為$\frac{1}{4}$.

點(diǎn)評 本題主要考查了奇函數(shù)性質(zhì)的簡單應(yīng)用,考查基本不等式的運(yùn)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知命題P:?x>0,總有2x>1,則¬P為(  )
A.?x>0,總有2x≤1B.?x≤0,總有2x≤1C.?x≤0,使得2x≤1D.?x>0,使得2x≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=(lnx-k-1)x(k∈R)
(1)當(dāng)x>1時(shí),求f(x)的單調(diào)區(qū)間和極值.
(2)若對于任意x∈[e,e2],都有f(x)<4lnx成立,求k的取值范圍.
(3)若x1≠x2,且f(x1)=f(x2),證明:x1x2<e2k

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}滿足a10+a9=6a8,若存在兩項(xiàng)am,an使得$\sqrt{{a_m}{a_n}}=4{a_1}$,則$\frac{2}{m}+\frac{1}{n}$的最大值為(  )
A.$\frac{1}{2}+\frac{\sqrt{2}}{3}$B.$\frac{11}{5}$C.$\frac{9}{10}$D.$3+2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)a=($\frac{9}{7}$)${\;}^{-\frac{1}{4}}$,b=($\frac{9}{7}$)${\;}^{\frac{1}{3}}$,c=log3$\frac{7}{9}$,則a,b,c的大小關(guān)系是(  )
A.b<a<cB.c<b<aC.c<a<bD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=alnx-(a+1)x-$\frac{1}{x}$
(1)當(dāng)a<-1時(shí),討論f(x)的單調(diào)性
(2)當(dāng)a=1時(shí),若g(x)=-x-$\frac{1}{x}$-1,證明:當(dāng)x>1時(shí),g(x)的圖象恒在f(x)的圖象上方
(3)證明:$\frac{ln2}{{2}^{2}}$+$\frac{ln3}{{3}^{2}}$+…+$\frac{lnn}{{n}^{2}}$<$\frac{2{n}^{2}-n-1}{4(n+1)}$(n∈N*,n≥2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若直線3x+y-3=0與直線6x+my+1=0平行,則它們之間的距離為(  )
A.$\frac{{\sqrt{10}}}{4}$B.$\frac{{\sqrt{10}}}{5}$C.$\frac{{7\sqrt{10}}}{10}$D.$\frac{{7\sqrt{10}}}{20}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)t∈R,已知p:函數(shù)f(x)=x2-tx+1有零點(diǎn),q:?x∈R,|x-1|≥2-t2
(Ⅰ)若q為真命題,求t的取值范圍;
(Ⅱ)若p∨q為假命題,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,角A,B,C的對邊分別為a,b,c,a2+b2+c2=ac+bc+ca.
(1)證明:△ABC是正三角形;
(2)如圖,點(diǎn)D的邊BC的延長線上,且BC=2CD,AD=$\sqrt{7}$,求sin∠BAD的值.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: av观看免费| 91亚色视频 | 欧美精品影院 | 91在线一区 | 中国第一毛片 | 亚洲福利在线观看 | 黄色在线观看网址 | 欧美一级片免费 | 日本免费毛片 | 亚洲综合另类 | 国产51自产区 | 国产黄视频在线观看 | 天天视频国产 | 亚洲精品一区二三区不卡 | 99精品视频在线 | 色一情一乱一乱一区91av | 欧美日韩一区在线 | 日韩中文在线观看 | 黄色一级片网站 | 久久天堂网| 亚洲一区二区在线视频 | 日韩三级中文字幕 | 中文在线免费看视频 | 久久国产精品99久久人人澡 | 色综合久久天天综合网 | 国产精品理论片 | 亚洲免费精品视频 | 国产伦精品 | 久久精品网址 | 成人免费视频国产免费 | 九九精品在线观看 | 3d动漫精品h区xxxxx区 | 极品在线视频 | 香蕉视频久久 | 国产午夜影院 | 国产精品日韩在线 | 亚洲成人福利 | 欧美性猛交xxxx | 天天操天天操天天操 | 欧美专区在线 | 欧美精品黄色 |