日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
2.已知函數f(x)=|a2x2-1|+ax,(其中a∈R,a≠0).
(1)當a<0時,若函數y=f(x)-c恰有x1,x2,x3,x4這4個零點,求x1+x2+x3+x4的值;
(2)當x∈[-1,1]時,求函數y=f(x)(其中a<0)的最大值M(a).

分析 (1)函數y=f(x)-c的零點可轉化為函數f(x)=|a2x2-1|+ax的圖象與直線y=c的交點問題,運用絕對值意義和二次函數圖象及二次方程韋達定理,即可得到所求值;
(2)運用分段函數表示f(x),結合圖象分析函數的單調性,即可得到f(x)在[-1,1]的最大值.

解答 解:(1)函數y=f(x)-c的零點可轉化為
函數f(x)=|a2x2-1|+ax的圖象與直線y=c的交點問題.
當a2x2≥1即|x|≥-$\frac{1}{a}$時,f(x)=a2x2+ax-1=(ax+$\frac{1}{2}$)2-$\frac{5}{4}$;
當a2x2<1即|x|<-$\frac{1}{a}$時,f(x)=-a2x2+ax+1=-(ax-$\frac{1}{2}$)2+$\frac{5}{4}$.
顯然當1<c<$\frac{5}{4}$時,y=f(x)-c有4個零點,
依次設為x1,x2,x3,x4
則x1,x4是方程a2x2+ax-1=c的2個根,從而${x_1}+{x_4}=-\frac{1}{a}$,
由x2,x3是方程-a2x2+ax+1=c的2個根,知x2+x3=$\frac{1}{a}$,
從而x1+x2+x3+x4=0.
(2)f(x)=$\left\{\begin{array}{l}{{a}^{2}{x}^{2}+ax-1,|x|≥-\frac{1}{a}}\\{-{a}^{2}{x}^{2}+ax+1,|x|<-\frac{1}{a}}\end{array}\right.$,
結合圖形分析可得f(x)在$({-∞,\frac{1}{a}}]$,$[{\frac{1}{2a},-\frac{1}{a}}]$上單調遞減,
在$[{\frac{1}{a},\frac{1}{2a}}],[{-\frac{1}{a},+∞})$上單調遞減,此時M(a)=f($\frac{1}{2a}$)=$\frac{5}{4}$.
當$-1<\frac{1}{a}$,即a<-1時,f(x)在[-1,$\frac{1}{a}$],[$\frac{1}{2a}$,-$\frac{1}{a}$]上單調遞減,
f(x)在$[{\frac{1}{a},\frac{1}{2a}}],[{-\frac{1}{a},1}]$上單調遞增,此時
M(a)=max{f(-1),f($\frac{1}{2a}$),f(1)}
=max{a2-a-1,$\frac{5}{4}$,a2+a-1}
=max{a2-a-1,$\frac{5}{4}$}=$\left\{\begin{array}{l}{{a}^{2}-a-1,a≤\frac{1-\sqrt{10}}{2}}\\{\frac{5}{4},\frac{1-\sqrt{10}}{2}<a<-1}\end{array}\right.$,
綜上述,
M(a)=$\left\{\begin{array}{l}{-{a}^{2}-a+1,-\frac{1}{2}≤a<0}\\{\frac{5}{4},a<-\frac{1}{2}}\\{{a}^{2}-a-1,a≤\frac{1-\sqrt{10}}{2}}\end{array}\right.$.

點評 本題考查函數零點問題的解法,注意運用數形結合方法,考查化簡運算能力,屬于難題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

12.已知函數f(x)=alnx+x2+bx+1在點(1,f(1))處的切線方程為4x-y-12=0.
(1)求函數f(x)的解析式;
(2)求f(x)的單調區間和極值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.已知$f(x)=-\frac{1}{2}a{x^2}+x-ln(1+x)$,其中a>0.
(Ⅰ)若函數f(x)在x=3處取得極值,求a的值;
(Ⅱ)求f(x)的單調區間;
(Ⅲ)若f(x)在[0,+∞)上的最大值是0,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

10.已知直線l1:y=x-1與圓C:(x+a)2+y2=a2(a>0)相交于A、B兩點,|AB|=2,直線l2∥l1,直線l2與圓C相交于D、E兩點.
(I)求圓C的標準方程;
(Ⅱ)若△CDE為直角三角形,求直線l2的方程;
(Ⅲ)記直線l1與x軸的交點為F(如圖),若∠CFD=∠CFE,求直線l2的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.函數$f(x)={log_{\frac{1}{3}}}({9-{3^x}})$定義域為(-∞,2);值域為(-2,+∞).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.已知函數f(x)=loga$\frac{x+1}{x-1}$(a>0,a≠1).
(1)當a>1時,討論f(x)的奇偶性,并證明函數f(x)在(1,+∞)上為單調遞減;
(2)當x∈(n,a-2)時,是否存在實數a和n,使得函數f(x)的值域為(1,+∞),若存在,求出實數a與n的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{3}}}{2}$,設其左右焦點為F1,F2,過F2的直線l交橢圓于A,B兩點,三角形F1AB的周長為8.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設O為坐標原點,若OA⊥OB,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.已知函數f(x)=$\frac{1}{2}{x^2}$-lnx.
(1)求函數f(x)的極值;
(2)求函數f(x)在[1,e]上的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

12.已知正整數數列{an}滿足a2=4,且對任意n∈N*,有2+$\frac{1}{{{a_{n+1}}}}$<$\frac{{\frac{1}{a_n}+\frac{1}{{{a_{n+1}}}}}}{{\frac{1}{n}-\frac{1}{n+1}}}$<2+$\frac{1}{a_n}$
(1)求a1,a3,并猜想數列{an}的通項公式;
(2)由(1)的猜想,設數列{$\frac{1}{a_n}$}的前n項和為Sn,求證:Sn<2.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产欧美日韩 | 日韩视频精品在线 | 精品视频一区二区 | 羞羞视频免费观看 | 四虎影院观看 | 伊人久久精品 | 丰满少妇理论片 | 国产精品国产三级国产aⅴ中文 | 免费一区二区 | 色综合天天射 | 九九九视频精品 | 人人草人人 | 国产精品日韩欧美 | 日韩欧美中文国 | 日韩国产一区二区三区 | 蜜桃精品久久久久久久免费影院 | 91精品国产91久久久久久吃药 | 欧美日韩精品一区二区在线观看 | 国产福利一区二区三区在线观看 | 色.com| 午夜免费视频 | 中文字幕一区二区在线观看 | 日韩成人黄色 | 亚洲xxxxx | 精品国产一区二区在线 | 国产精品二区一区二区aⅴ污介绍 | 成人 在线 | 国产高清自拍 | jizz欧美大片 | 热久久这里只有精品 | 国产精品国产成人国产三级 | 国产精品一区二区视频 | 日韩在线高清 | 91久久国产综合久久蜜月精品 | 黄色电影免费看 | 国产精品99久久久久久久久久久久 | 91精品国产综合久久香蕉922 | 国产高清不卡一区二区三区 | 久久成人激情视频 | 乱轮一区 | 欧美黄色一区二区 |