【題目】如圖所示,等腰梯形中,
,
,
,
為
中點(diǎn),
與
交于點(diǎn)
,將
沿
折起,使點(diǎn)
到達(dá)點(diǎn)
的位置(
平面
).
(1)證明:平面平面
;
(2)若,試判斷線段
上是否存在一點(diǎn)
(不含端點(diǎn)),使得直線
與平面
所成角的正弦值為
,若存在,求出
的值;若不存在,說明理由.
【答案】(1)證明見解析(2)存在,
【解析】
(1)先利用線面垂直的判定定理證明平面
,再利用面面垂直證明面
平面
即可;
(2)建立空間直角坐標(biāo)系求出平面的法向量,再利用向量所成角的關(guān)系式求出直線
與平面
所成角的正弦值,建立關(guān)系式,即可得出
的值.
(1)證明:連接,在等腰梯形中
,
,
,
為中點(diǎn),
∴四邊形為菱形,∴
,
∴,
,即
,
,且
,
平面
,
平面
,∴
平面
.
又平面
,∴平面
平面
.
(2)由(1)可知四邊形為菱形,∴
,
在等腰梯形中
,∴
正三角形,
∴,同理
,
∵,∴
,∴
.
由(1)可知,
,
以為原點(diǎn),
,
,
分別為
軸,
軸,為
軸,建立空間直角坐標(biāo)系
,
由題意得,各點(diǎn)坐標(biāo)為,
,
,
,
,
∴,
,
,
設(shè),
,
設(shè)平面的一個(gè)法向量為
,
則,即
,
取,
,得
,∴
,
設(shè)直線與平面
所成角為
,
,
則,即
,
化簡得:,解得
,
∴存在點(diǎn)為
的中點(diǎn)時(shí),使直線
與平面
所成角的正弦值為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:{an}是公比大于1的等比數(shù)列,Sn為其前n項(xiàng)和,S3=7,且a1+3,3a2,a3+4構(gòu)成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=log2a3n+1,求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知,
,求函數(shù)
的單調(diào)區(qū)間和極值;
(2)已知,不等式
(其中
為自然對(duì)數(shù)的底數(shù))對(duì)任意的實(shí)數(shù)
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(
為常數(shù)).
(1)當(dāng)時(shí),求曲線
在
處的切線方程;
(2)若函數(shù)在
內(nèi)存在唯一極值點(diǎn)
,求實(shí)數(shù)
的取值范圍,并判斷
是
在
內(nèi)的極大值點(diǎn)還是極小值點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有以下命題:
①若函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),則f(x)的值域?yàn)?/span>{0};
②若函數(shù)f(x)是偶函數(shù),則f(|x|)=f(x);
③若函數(shù)f(x)在其定義域內(nèi)不是單調(diào)函數(shù),則f(x)不存在反函數(shù);
④若函數(shù)f(x)存在反函數(shù)f﹣1(x),且f﹣1(x)與f(x)不完全相同,則f(x)與f﹣1(x)圖象的公共點(diǎn)必在直線y=x上;
其中真命題的序號(hào)是 .(寫出所有真命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),
,…,
為1,2,…,10的一個(gè)排列,則滿足對(duì)任意正整數(shù)m,n,且
,都有
成立的不同排列的個(gè)數(shù)為( )
A.512B.256C.255D.64
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某校運(yùn)動(dòng)會(huì)男生組田徑綜合賽以選手三項(xiàng)運(yùn)動(dòng)的綜合積分高低決定排名.具體積分規(guī)則如表1所示,某代表隊(duì)四名男生的模擬成績?nèi)绫?/span>2.
表1 田徑綜合賽項(xiàng)目及積分規(guī)則
項(xiàng)目 | 積分規(guī)則 |
| 以 |
跳高 | 以 |
擲實(shí)心球 | 以 |
表2 某隊(duì)模擬成績明細(xì)
姓名 | 100米跑(秒) | 跳高(米) | 擲實(shí)心球(米) |
甲 | |||
乙 | |||
丙 | |||
丁 |
根據(jù)模擬成績,該代表隊(duì)?wèi)?yīng)選派參賽的隊(duì)員是:( )
A.甲B.乙C.丙D.丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形與
均為菱形,設(shè)
與
相交于點(diǎn)
,若
,且
.
(1)求證:平面
;
(2)求直線與平面
所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)F1、F2分別為橢圓C:=1(a>b>0)的左、右焦點(diǎn),點(diǎn)A為橢圓C的左頂點(diǎn),點(diǎn)B為橢圓C的上頂點(diǎn),且|AB|=
,△BF1F2為直角三角形.
(1)求橢圓C的方程;
(2)設(shè)直線y=kx+2與橢圓交于P、Q兩點(diǎn),且OP⊥OQ,求實(shí)數(shù)k的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com