【題目】如圖所示,游樂場中摩天輪勻速逆時針旋轉,每轉一圈需要6min,其中心距離地面40.5m,摩天輪的半徑為40m,已知摩天輪上點P的起始位置在最低點處,在時刻t(min)時點P距離地面的高度為f(t)=Asin(wt+φ)+h(A>0,w>0,﹣π<φ<0,t≥0).
(1)求f(t)的單調區間;
(2)求證:f(t)+f(t+2)+f(t+4)是定值.
【答案】
(1)解:由題意可得A=40, =6,∴ω=
,φ=﹣
,h=40.5,
故f(t)=40sin( t﹣
)+40.5=40.5﹣40cos
t,
令2kπ≤ t≤2kπ+π,求得6k≤t≤6k+3,可得函數的增區間為[6k,6k+3],k∈Z;
令2kπ+π≤ t≤2kπ+2π,求得6k+3≤t≤6k+6,可得函數的減區間為[6k+3,6k+6],k∈Z
(2)解:證明:∵f(t)=40.5﹣40cos t,
∴f(t)+f(t+2)+f(t+4)=121.5﹣40[cos t+cos(
t+
)+cos(
t+
)].
又 cos t+cos(
t+
)﹣cos(
t+
)=cos
t﹣cos(
t﹣
)﹣cos(
t+
)
=cos t﹣cos
t﹣
sin
t+
sin
t=0,
∴f(t)+f(t+2)+f(t+4)=121.5﹣40×0=121.5,顯然為定值,
故要證得結論成立
【解析】(1)利用正弦函數的圖象和性質,求得f(t)的解析式,再利用余弦函數的單調性求得f(t)的單調區間.(2)利用誘導公式、兩角和差的三角公式化簡 f(t)+f(t+2)+f(t+4),可得結論.
科目:高中數學 來源: 題型:
【題目】下列四個結論: ①函數 的值域是(0,+∞);
②直線2x+ay﹣1=0與直線(a﹣1)x﹣ay﹣1=0平行,則a=﹣1;
③過點A(1,2)且在坐標軸上的截距相等的直線的方程為x+y=3;
④若圓柱的底面直徑與高都等于球的直徑,則圓柱的側面積等于球的表面積.
其中正確的結論序號為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在數列中,
,
,
,其中
.
⑴ 求證:數列為等差數列;
⑵ 設,
,數列
的前
項和為
,若當
且
為偶數時,
恒成立,求實數
的取值范圍;
⑶ 設數列的前
項的和為
,試求數列
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,且以原點為圓心,橢圓的焦距為直徑的圓與直線
相切(
為常數).
(1)求橢圓的標準方程;
(2)如圖,若橢圓的左、右焦點分別為
,過
作直線
與橢圓分別交于兩點
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(Ⅰ)已知集合A={(x,y)|y=x2+2},B={(x,y)|y=6﹣x2},求A∩B; (Ⅱ)已知集合A={y|y=x2+2},B={y|y=6﹣x2},求A∩B.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com