【題目】已知若橢圓:
(
)交
軸于
,
兩點,點
是橢圓
上異于
,
的任意一點,直線
,
分別交
軸于點
,
,則
為定值
.
(1)若將雙曲線與橢圓類比,試寫出類比得到的命題;
(2)判定(1)類比得到命題的真假,請說明理由.
科目:高中數學 來源: 題型:
【題目】已知命題甲:對任意實數,不等式
恒成立;命題乙:已知
滿足
,且
恒成立.
(1)分別求出甲乙為真命題時,實數的取值范圍;
(2)求實數的取值范圍,使命題甲乙中有且只有一個真命題.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在一次數學測驗后,數學老師將某班全體學生(50人)的數學成績進行初步統計后交給其班主任(如表).
分數 | 5060 | 60~70 | 70-80 | 80-90 | 90~100 |
人數 | 2 | 6 | 10 | 20 | 12 |
請你幫助這位班主任完成下面的統計分析工作:
(1)列出頻率分布表;
(2)畫出頻率分布直方圖及頻率折線圖;
(3)從頻率分布直方圖估計出該班同學成績的眾數、中位數和平均數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統一為元,在下一年續保時,實行的是費率浮動機制,保費與上一年度車輛發生道路交通事故的情況相聯系,發生交通事故的次數越多,費率也就是越高,具體浮動情況如下表:
交強險浮動因素和浮動費率比率表 | ||
浮動因素 | 浮動比率 | |
上一個年度未發生有責任道路交通事故 | 下浮10% | |
上兩個年度未發生有責任道路交通事故 | 下浮20% | |
上三個及以上年度未發生有責任道路交通事故 | 下浮30% | |
上一個年度發生一次有責任不涉及死亡的道路交通事故 | 0% | |
上一個年度發生兩次及兩次以上有責任道路交通事故 | 上浮10% | |
上一個年度發生有責任道路交通死亡事故 | 上浮30% |
某機構為了 某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續保時的情況,統計得到了下面的表格:
類型 | ||||||
數量 | 10 | 5 | 5 | 20 | 15 | 5 |
以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(1)按照我國《機動車交通事故責任強制保險條例》汽車交強險價格的規定, ,記
為某同學家的一輛該品牌車在第四年續保時的費用,求
的分布列與數學期望;(數學期望值保留到個位數字)
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車,假設購進一輛事故車虧損5000元,一輛非事故車盈利10000元:
①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】西瓜是夏日消暑的好水果,西瓜的銷售價格(單位:千元/噸)與西瓜的年產量
(單位:噸)有關,下表數據為某地區連續6年來西瓜的年產量及對應的西瓜銷售價格.
1 | 2 | 3 | 4 | 5 | 6 | |
(1)若與
有較強的線性相關關系,根據上表提供的數據,用最小二乘法求出
與
的線性回歸直線方程(系數精確到
);
(2)若每噸西瓜的成本為4810元,假設所有西瓜可以全部賣出,預測當年產量為多少噸 時年利潤最大?
參考公式及數據:
p>對于一組數據查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的兩個焦點坐標分別是
、
,并且經過點
.
(1)求橢圓的方程;
(2)若直線與圓
:
相切,并與橢圓
交于不同的兩點
、
.當
,且滿足
時,求
面積
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,以坐標原點
為極點,以
軸正半軸為極軸,建立極坐標系,直線
的極坐標方程為
,
的極坐標方程為
.
(1)求直線與
的交點的軌跡
的方程;
(2)若曲線上存在4個點到直線
的距離相等,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在《爸爸去哪兒》第二季第四期中,村長給6位“萌娃”布置一項搜尋空投食物的任務.已知:①食物投擲地點有遠、近兩處;②由于Grace年紀尚小,所以要么不參與該項任務,但此時另需一位小孩在大本營陪同,要么參與搜尋近處投擲點的食物;③所有參與搜尋任務的小孩須被均分成兩組,一組去遠處,一組去近處,那么不同的搜尋方案有______種.(以數字作答)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了研究某種微生物的生長規律,研究小組在實驗室對該種微生物進行培育實驗.前三天觀測的該微生物的群落單位數量分別為12,16,24.根據實驗數據,用y表示第天的群落單位數量,某研究員提出了兩種函數模型;①
;②
,其中a,b,c,p,q,r都是常數.
(1)根據實驗數據,分別求出這兩種函數模型的解析式;
(2)若第4天和第5天觀測的群落單位數量分別為40和72,請從這兩個函數模型中選出更合適的一個,并計算從第幾天開始該微生物群落的單位數量超過1000.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com