【題目】如圖,矩形中,
為
的中點(diǎn),將
沿直線
翻折成
,連結(jié)
,
為
的中點(diǎn),則在翻折過程中,下列說法中所有正確的是( )
A.存在某個(gè)位置,使得
B.翻折過程中,的長(zhǎng)是定值
C.若,則
D.若,當(dāng)三棱錐
的體積最大時(shí),三棱錐
的外接球的表面積是
【答案】BD
【解析】
對(duì)于選項(xiàng)A,取中點(diǎn)
,取
中點(diǎn)
,連結(jié)
,
,通過假設(shè)
,推出
平面
,得到
,則
,即可判斷;
對(duì)于選項(xiàng)B,在判斷A的圖基礎(chǔ)上,連結(jié)交
于點(diǎn)
,連結(jié)
,易得
,由余弦定理,求得
為定值即可;
對(duì)于選項(xiàng)C,取中點(diǎn)
,
,
,由線面平行的性質(zhì)定理導(dǎo)出矛盾,即可判斷;
對(duì)于選項(xiàng)D,易知當(dāng)平面與平面
垂直時(shí),三棱錐
的體積最大,說明此時(shí)
中點(diǎn)
為外接球球心即可.
如圖1,取中點(diǎn)
,取
中點(diǎn)
,連結(jié)
交
于點(diǎn)
,連結(jié)
,
,
,
則易知,
,
,
,
,
由翻折可知,,
,
對(duì)于選項(xiàng)A,易得,則
、
、
、
四點(diǎn)共面,由題可知
,若
,可得
平面
,故
,則
,不可能,故A錯(cuò)誤;
對(duì)于選項(xiàng)B,易得,
在中,由余弦定理得
,
整理得,
故為定值,故B正確;
如圖2,取中點(diǎn)
,取
中點(diǎn)
,連結(jié)
,
,
,
,,
對(duì)于選項(xiàng)C,由得
,若
,易得
平面
,故有
,從而
,顯然不可能,故C錯(cuò)誤;
對(duì)于選項(xiàng)D,由題易知當(dāng)平面與平面
垂直時(shí),三棱錐B1﹣AMD的體積最大,此時(shí)
平面
,則
,由
,易求得
,
,故
,因此
,
為三棱錐
的外接球球心,此外接球半徑為
,表面積為
,故D正確.
故選:BD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“雙11”促銷活動(dòng)中,某商場(chǎng)為了吸引顧客,搞好促銷活動(dòng),采用“雙色球”定折扣的方式促銷,即:在紅、黃的兩個(gè)紙箱中分別裝有大小完全相同的紅、黃球各5個(gè),每種顏色的5個(gè)球上標(biāo)有1,2,3,4,5等5個(gè)數(shù)字,顧客結(jié)賬時(shí),先分別從紅、黃的兩個(gè)紙箱中各取一球,按兩個(gè)球的數(shù)字之和為折扣打折,如,就按3折付款,并規(guī)定取球后不再增加商品.按此規(guī)定,顧客享有6折及以下折扣的概率是( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)與函數(shù)
的圖象有兩個(gè)不同的公共點(diǎn)
、
.
(1)求實(shí)數(shù)的取值范圍;
(2)設(shè)點(diǎn)是線段
的中點(diǎn),證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}為等差數(shù)列,前n項(xiàng)和為Sn(n∈N*),{bn}是首項(xiàng)為2的等比數(shù)列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.
(Ⅰ)求{an}和{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{anbn}的前n項(xiàng)和為Tn(n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)T為圓上一動(dòng)點(diǎn),過點(diǎn)T分別作x軸,y軸的垂線,垂足分別為A,B,連接BA延長(zhǎng)至點(diǎn)P,使得
,點(diǎn)P的軌跡記為曲線C.
(1)求曲線C的方程;
(2)若點(diǎn)A,B分別位于x軸與y軸的正半軸上,直線AB與曲線C相交于M,N兩點(diǎn),試問在曲線C上是否存在點(diǎn)Q,使得四邊形OMQN為平行四邊形,若存在,求出直線l方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大型公司為了切實(shí)保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次乙肝普查.為此需要抽驗(yàn)960人的血樣進(jìn)行化驗(yàn),由于人數(shù)較多,檢疫部門制定了下列兩種可供選擇的方案.方案①:將每個(gè)人的血分別化驗(yàn),這時(shí)需要驗(yàn)960次.方案②:按個(gè)人一組進(jìn)行隨機(jī)分組,把從每組
個(gè)人抽來的血混合在一起進(jìn)行檢驗(yàn),如果每個(gè)人的血均為陰性,則驗(yàn)出的結(jié)果呈陰性,這
個(gè)人的血就只需檢驗(yàn)一次(這時(shí)認(rèn)為每個(gè)人的血化驗(yàn)
次);否則,若呈陽性,則需對(duì)這
個(gè)人的血樣再分別進(jìn)行一次化驗(yàn).這樣,該組
個(gè)人的血總共需要化驗(yàn)
次.假設(shè)此次普查中每個(gè)人的血樣化驗(yàn)呈陽性的概率為
,且這些人之間的試驗(yàn)反應(yīng)相互獨(dú)立.
(1)設(shè)方案②中,某組個(gè)人中每個(gè)人的血化驗(yàn)次數(shù)為
,求
的分布列;
(2)設(shè).試比較方案②中,
分別取2,3,4時(shí),各需化驗(yàn)的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗(yàn)次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一對(duì)夫婦為了給他們的獨(dú)生孩子支付將來上大學(xué)的費(fèi)用,從孩子一周歲生日開始,每年到銀行儲(chǔ)蓄元一年定期,若年利率為
保持不變,且每年到期時(shí)存款(含利息)自動(dòng)轉(zhuǎn)為新的一年定期,當(dāng)孩子18歲生日時(shí)不再存入,將所有存款(含利息)全部取回,則取回的錢的總數(shù)為
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形所在平面與等邊
所在平面互相垂直,
,
分別為
,
的中點(diǎn).
(1)求證:平面
.
(2)試問:在線段上是否存在一點(diǎn)
,使得平面
平面
?若存在,試指出點(diǎn)
的位置,并證明你的結(jié)論:若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com