【題目】已知拋物線C:y2=2px(p>0)的焦點為F,過F作垂直于x軸的直線交拋物線于A,B,兩點,△AOB的面積為8,直線l與拋物線C相切于Q點,P是l上一點(不與Q重合).
(1)求拋物線C的方程;
(2)若以線段PQ為直徑的圓恰好經過F,求|PF|的最小值.
【答案】
(1)解:由已知可得:F的坐標為 ,|AB|=2p,
∴ ,
∴p=4,
∴拋物線方程為y2=8x;
(2)解:設Q(x0,y0),P(x1,y1)
設直線為l:y﹣y0=k(x﹣x0),聯立方程 得
利用△=0化簡可得: ,
又∵ ,可得
∴直線l:y0y=4(x+x0),
∵ ,
,
∴ ,
∵y1y0=4(x0+x1),
∴x1x0+2(x0+x1)+4=(x1+2)(x0+2)=0,
∵x0>0,
∴x1+2=0,
∴x1=﹣2,
即點P是拋物線準線x=﹣2上的點
∴PF的最小值是4
【解析】(1)F的坐標為 ,根據三角形的面積即可求出p的值,問題得以解決;(2)設Q(x0 , y0),P(x1 , y1)設直線為l:y﹣y0=k(x﹣x0),根據韋達定理求出和向量的數量積的運算,即可求出x1的值,問題得以解決.
科目:高中數學 來源: 題型:
【題目】對于函數,若在定義域內存在實數
,滿足
,則稱
為“
類函數”.
(1)已知函數,試判斷
是否為“
類函數”?并說明理由;
(2)設是定義在
上的“
類函數”,求是實數
的最小值;
(3)若
為其定義域上的“
類函數”,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,E是棱CC1的中點,F是側面BCC1B1內的動點,且A1F∥平面D1AE,則A1F與平面BCC1B1所成角的正切值t構成的集合是( )
A.{t| }
B.{t| ≤t≤2}??
C.{t|2 }
D.{t|2 }
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,以
為極點,
軸的正半軸為極軸建立極坐標系,直線
的參數方程為
,曲線
的極坐標方程為
.
(1)寫出直線的直角坐標方程和曲線
的普通方程;
(2)求直線與曲線
的交點的直角坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若以連續擲兩次骰子分別得到的點數m、n作為點P的坐標(m,n),求:
(1)點P在直線x+y=7上的概率;
(2)點P在圓x2+y2=25外的概率.
(3)將m,n,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,橢圓經過點
,離心率
,直線
的方程為
.
求橢圓
的方程;
是經過右焦點
的任一弦(不經過點
),設直線
與直線
相交于點
,記
,
,
的斜率為
,
,
.問:是否存在常數
,使得
?若存在,求
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】己知函數f(x)=sinx+ cosx(x∈R),先將y=f(x)的圖象上所有點的橫坐標縮短到原來的
倍(縱坐標不變),再將得到的圖象上所有點向右平行移動θ(θ>0)個單位長度,得到的圖象關于直線x=
對稱,則θ的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com