【題目】為響應黨中央“扶貧攻堅”的號召,某單位指導一貧困村通過種植紫甘薯來提高經濟收入.紫甘薯對環境溫度要求較高,根據以往的經驗,隨著溫度的升高,其死亡株數成增長的趨勢.下表給出了2017年種植的一批試驗紫甘薯在溫度升高時6組死亡的株數:
經計算: ,
,
,
,
,
,
,其中
分別為試驗數據中的溫度和死亡株數,
.
(1)若用線性回歸模型,求關于
的回歸方程
(結果精確到
);
(2)若用非線性回歸模型求得關于
的回歸方程為
,且相關指數為
.
(i)試與(1)中的回歸模型相比,用說明哪種模型的擬合效果更好;
(ii)用擬合效果好的模型預測溫度為時該批紫甘薯死亡株數(結果取整數).
附:對于一組數據,
,……,
,其回歸直線
的斜率和截距的最小二乘估計分別為:
;相關指數為:
.
【答案】(Ⅰ) ;(Ⅱ)詳見解析.
【解析】試題分析:(1)利用回歸方程的公式,求得線性回歸方程為: =6.6x139.4;(2)(i)
,因為0.9398<0.9522,所以回歸方程
比線性回歸方程
=6.6x138.6擬合效果更好;(ii)當溫度
時,
,即當溫度為35C時該批紫甘薯死亡株數為190.
試題解析:
(Ⅰ)由題意得,
∴336.6326=139.4,
∴關于
的線性回歸方程為:
=6.6x139.4.
(注:若用計算出
,則酌情扣1分)
(Ⅱ) (i)線性回歸方程=6.6x138.6對應的相關系數為:
,
因為0.9398<0.9522,
所以回歸方程比線性回歸方程
=6.6x138.6擬合效果更好.
(ii)由(i)知,當溫度時,
,
即當溫度為35C時該批紫甘薯死亡株數為190.
科目:高中數學 來源: 題型:
【題目】新型冠狀病毒肺炎疫情發生以來,在世界各地逐漸蔓延.在全國人民的共同努力和各級部門的嚴格管控下,我國的疫情已經得到了很好的控制.然而,小王同學發現,每個國家在疫情發生的初期,由于認識不足和措施不到位,感染人數都會出現快速的增長.下表是小王同學記錄的某國連續8天每日新型冠狀病毒感染確診的累計人數.
日期代碼 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
累計確診人數 | 4 | 8 | 16 | 31 | 51 | 71 | 97 | 122 |
為了分析該國累計感染人數的變化趨勢,小王同學分別用兩種模型:①,②
對變量
和
的關系進行擬合,得到相應的回歸方程并進行殘差分析,殘差圖如下(注:殘差
):經過計算得
,
,
,
,其中
,
.
(1)根據殘差圖,比較模型①,②的擬合效果,應該選擇哪個模型?并簡要說明理由;
(2)根據(1)問選定的模型求出相應的回歸方程(系數均保留一位小數);
(3)由于時差,該國截止第9天新型冠狀病毒感染確診的累計人數尚未公布.小王同學認為,如果防疫形勢沒有得到明顯改善,在數據公布之前可以根據他在(2)問求出的回歸方程來對感染人數作出預測,那么估計該地區第9天新型冠狀病毒感染確診的累計人數是多少.
附:回歸直線的斜率和截距的最小二乘估計公式分別為:,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了節能減排,發展低碳經濟,我國政府從2001年起就通過相關扶植政策推動新能源汽車產業發展.下面的圖表反映了該產業發展的相關信息:
中國新能源汽車產銷情況一覽表 | ||||
新能源汽車產量 | 新能源汽車銷量 | |||
產量(萬輛) | 比上年同期增長( | 銷量(萬輛) | 比上年同期增長( | |
2018年3月 | 6.8 | 105 | 6.8 | 117.4 |
4月 | 8.1 | 117.7 | 8.2 | 138.4 |
5月 | 9.6 | 85.6 | 10.2 | 125.6 |
6月 | 8.6 | 31.7 | 8.4 | 42.9 |
7月 | 9 | 53.6 | 8.4 | 47.7 |
8月 | 9.9 | 39 | 10.1 | 49.5 |
9月 | 12.7 | 64.4 | 12.1 | 54.8 |
10月 | 14.6 | 58.1 | 13.8 | 51 |
11月 | 17.3 | 36.9 | 16.9 | 37.6 |
1-12月 | 127 | 59.9 | 125.6 | 61.7 |
2019年1月 | 9.1 | 113 | 9.6 | 138 |
2月 | 5.9 | 50.9 | 5.3 | 53.6 |
2019年2月份新能源汽車銷量結構圖
根據上述圖表信息,下列結論錯誤的是( )
A.2018年4月份我國新能源汽車的銷量高于產量
B.2017年3月份我國新能源汽車的產量不超過3.4萬輛
C.2019年2月份我國插電式混合動力汽車的銷量低于1萬輛
D.2017年我國新能源汽車總銷量超過70萬輛
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知
分別為橢圓
的左、右焦點,且橢圓經過點
和點
,其中
為橢圓的離心率.
(1)求橢圓的方程;
(2)過點的直線
橢圓于另一點
,點
在直線
上,且
.若
,求直線
的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在下列三個正方體中,
均為所在棱的中點,過
作正方體的截面.在各正方體中,直線
與平面
的位置關系描述正確的是
A. 平面
的有且只有①;
平面
的有且只有②③
B. 平面
的有且只有②;
平面
的有且只有①
C. .平面
的有且只有①;
平面
的有且只有②
D. 平面
的有且只有②;
平面
的有且只有③
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐的底面是正方形,每條側棱的長都是底面邊長的
倍,
為側棱
上的點.
(1)求證:;
(2)若平面
,求二面角
的大小;
(3)在(2)的條件下,側棱上是否存在一點
,使得
平面
.若存在,求
的值;若不存在,試說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}滿足a3=2,前3項和為S3=.
(1)求{an}的通項公式;
(2)設等比數列{bn}滿足b1=a1,b4=a15,求{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P-ABCD的底面ABCD是矩形,PA⊥平面ABCD, PA=AD=2,E,F分別為PA,AB的中點,且DF⊥CE.
(1)求AB的長;
(2)求直線CF與平面DEF所成角的正弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com