【題目】己知f(x)=x2﹣2x+2,在[ ,m2﹣m+2]上任取三個數a,b,c,均存在以 f(a),f(b),f(c)為三邊的三角形,則m的取值范圍為( )
A.(0,1)
B.[0, )
C.(0, ]
D.[ ,
]
科目:高中數學 來源: 題型:
【題目】如圖所示,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是梯形,AD∥BC,側面ABB1A1為菱形,∠DAB=∠DAA1 .
(Ⅰ)求證:A1B⊥BC;
(Ⅱ)若AD=AB=3BC,∠A1AB=60°,點D在平面ABB1A1上的射影恰為線段A1B的中點,求平面DCC1D1與平面ABB1A1所成銳二面角的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的左、右焦點分別為
、
,
為橢圓
的右頂點,
,
分別為橢圓
的上、下頂點.線段
的延長線與線段
交于點
,與橢圓
交于點
.(1)若橢圓的離心率為
,
的面積為12,求橢圓
的方程;(2)設
,求實數
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某中學聯盟舉行了一次“盟校質量調研考試”活動,為了解本次考試學生的某學科成績情況,從中抽取部分學生的分數(滿分為分,得分取正整數,抽取學生的分數均在
之內)作為樣本(樣本容量為
)進行統計,按照
的分組作出頻率分布直方圖,并作出樣本分數的莖葉圖(莖葉圖中僅列出了得分在
的數據)
(Ⅰ)求樣本容量和頻率分布直方圖中的
的值;
(Ⅱ)在選取的樣本中,從成績在分以上(含
分)的學生中隨機抽取
名學生參加“省級學科基礎知識競賽”,求所抽取的
名學生中恰有一人得分在
內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某河道中過度滋長一種藻類,環保部門決定投入生物凈化劑凈化水體. 因技術原因,第t分鐘內投放凈化劑的路徑長度 (單位:m),凈化劑凈化水體的寬度
(單位:m)是時間t(單位:分鐘)的函數:
(
由單位時間投放的凈化劑數量確定,設
為常數,且
).
(1)試寫出投放凈化劑的第t分鐘內凈化水體面積的表達式;
(2)求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某大學在開學季準備銷售一種盒飯進行試創業,在一個開學季內,每售出1盒該盒飯獲利潤10元,未售出的產品,每盒虧損5元.根據歷史資料,得到開學季市場需求量的頻率分布直方圖,如圖所示.該同學為這個開學季購進了150盒該產品,以(單位:盒,
)表示這個開學季內的市場需求量,
(單位:元)表示這個開學季內經銷該產品的利潤.
(Ⅰ)根據直方圖估計這個開學季內市場需求量的平均數和眾數;
(Ⅱ)將表示為
的函數;
(Ⅲ)根據頻率分布直方圖估計利潤不少于1350元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,曲線
的參數方程為
(
為參數).在極坐標系(與平面直角坐標系
取相同的長度單位,且以原點
為極點,以
軸非負半軸為極軸)中,直線
的方程為
.
(1)求曲線的普通方程及直線
的直角坐標方程;
(2)設是曲線
上的任意一點,求點
到直線
的距離的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
(1)求函數 的定義域;
(2)若存在a∈R,對任意 ,總存在唯一x0∈[﹣1,2],使得f(x1)=g(x0)成立.求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a>0且a≠1,函數f(x)=loga(x+1), ,記F(x)=2f(x)+g(x)
(1)求函數F(x)的定義域D及其零點;
(2)試討論函數F(x)在定義域D上的單調性;
(3)若關于x的方程F(x)﹣2m2+3m+5=0在區間[0,1)內僅有一解,求實數m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com