【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中直線
的傾斜角為
,且經過點
,以坐標系
的原點為極點,
軸的非負半軸為極軸,建立極坐標系
,曲線
的極坐標方程為
,直線
與曲線
相交于
兩點,過點
的直線
與曲線
相交于
兩點,且
.
(1)平面直角坐標系中,求直線的一般方程和曲線
的標準方程;
(2)求證: 為定值.
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,已知點
,曲線
的參數方程為
(
為參數).以原點為極點,
軸正半軸為極軸建立極坐標系,直線
的極坐標方程為
.
(Ⅰ)判斷點與直線
的位置關系并說明理由;
(Ⅱ)設直線與曲線
的兩個交點分別為
,
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列四組函數中,是同一個函數的是( )
A. ,
B.f(x)=2log2x,
C.f(x)=ln(x﹣1)﹣ln(x+1),
D.f(x)=lg(1﹣x)+lg(1+x),g(x)=lg(1﹣x2)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=loga(x+1),(a>0,a≠1)的圖象經過點(﹣ ,﹣2),圖象上有三個點A,B,C,它們的橫坐標依次為t﹣1,t,t+1,(t≥1),記三角形ABC的面積為S(t),
(1)求f(x)的表達式;
(2)求S(1);
(3)是否存在正整數m,使得對于一切不小于1的t,都有S(t)<m,若存在求的最小值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: (a>b>0)過點P(﹣1,﹣1),c為橢圓的半焦距,且c=
b.過點P作兩條互相垂直的直線l1 , l2與橢圓C分別交于另兩點M,N.
(1)求橢圓C的方程;
(2)若直線l1的斜率為﹣1,求△PMN的面積;
(3)若線段MN的中點在x軸上,求直線MN的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知冪函數y=x3m﹣9(m∈N*)的圖象關于y軸對稱,且在(0,+∞)上函數值隨x增大而減。
(1)求m的值;
(2)求滿足(a+1) <(3﹣2a)
的a的范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義域為R的函數f(x)= 是奇函數.
(1)求a,b的值;
(2)判斷函數的單調性并證明;
(3)若對任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知P(﹣2,3)是函數y= 圖象上的點,Q是雙曲線在第四象限這一分支上的動點,過點Q作直線,使其與雙曲線y=
只有一個公共點,且與x軸、y軸分別交于點C、D,另一條直線y=
x+6與x軸、y軸分別交于點A、B.則
(1)O為坐標原點,三角形OCD的面積為 .
(2)四邊形ABCD面積的最小值為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知關于x的不等式:|2x﹣m|≤1的整數解有且僅有一個值為2.
(1)求整數m的值;
(2)在(1)的條件下,解不等式:|x﹣1|+|x﹣3|≥m.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com