【題目】若定義在上的函數
,
.
(1)求函數的單調區間;
(2)若,
,
滿足
,則稱
比
更接近
.當
且
時,試比較
和
哪個更接近
,并說明理由.
【答案】(1)當時,
單調遞增區間為
;當
時,
單調遞增區間為
,
單調遞減區間為
;(2)
比
更接近
,理由見解析.
【解析】
(1)對求導,分
和
進行討論,研究
的正負情況,從而得到
的單調區間;(2)設
,
,
利用導數研究出和
在
的單調性和正負情況,分
和
進行討論,得到
和
的大小關系,從而得到答案.
(1)函數,
求導得到,
當時,
,函數
在
上單調遞增;
當時,由
,得到
,
所以時,
,
單調遞減,
時,
,
單調遞增,
綜上所述,當時,
單調遞增區間為
;當
時,
單調遞增區間為
,
單調遞減區間為
;
(2)設,
所以,所以
在
時單調遞減,
又因為
所以當時
,當
時,
.
而,設
,則
,
所以在
上單調遞增,即
在
上單調遞增,
而,所以
時,
,
所以在
時單調遞增,且
,
所以.
①當時
,
設,則
所以在
單調遞減,
.
又因為,所以
,
所以
所以比
更接近
.
②當時,
,
,
設,則
,
設,
,
所以在
上單調遞減,即
在
上單調遞減,
所以
所以在
上單調遞減,
所以,即
,
所以比
更接近
.
綜上所述,當且
時,
比
更接近
.
科目:高中數學 來源: 題型:
【題目】已知某校甲、乙、丙三個興趣小組的學生人數分別為36,24,12.現采用分層抽樣的方法從中抽取6人,進行睡眠質量的調查.
(1)應從甲、乙、丙三個興趣小組的學生中分別抽取多少人?
(2)設抽出的6人分別用、
、
、
、
、
表示,現從6人中隨機抽取2人做進一步的身體檢查.
(i)試用所給字母列出所有可能的抽取結果;
(ii)設為事件“抽取的2人來自同一興趣小組”,求事件
發生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】明初出現了一大批杰出的騎兵將領,比如徐達、常遇春、李文忠、藍玉和朱棣.明初騎兵軍團擊敗了不可一世的蒙古騎兵,是當時世界上最強騎兵軍團.假設在明軍與元軍的某次戰役中,明軍有8位將領,善用騎兵的將領有5人;元軍有8位將領,善用騎兵的有4人.
(1)現從明軍將領中隨機選取4名將領,求至多有3名是善用騎兵的將領的概率;
(2)在明軍和元軍的將領中各隨機選取2人,為善用騎兵的將領的人數,寫出
的分布列,并求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數列{an}的前n項和為Sn,若對任意正整數n,總存在正整數m,使得Sn=am,則稱數列{an}為S數列.
(1)S數列的任意一項是否可以寫成其某兩項的差?請說明理由.
(2)①是否存在等差數列為S數列,若存在,請舉例說明;若不存在,請說明理由.
②是否存在正項遞增等比數列為S數列,若存在,請舉例說明;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某產品的三個質量指標分別為x, y, z, 用綜合指標S =" x" + y + z評價該產品的等級. 若S≤4, 則該產品為一等品. 現從一批該產品中, 隨機抽取10件產品作為樣本, 其質量指標列表如下:
產品編號 | A1 | A2 | A3 | A4 | A5 |
質量指標(x, y, z) | (1,1,2) | (2,1,1) | (2,2,2) | (1,1,1) | (1,2,1) |
產品編號 | A6 | A7 | A8 | A9 | A10 |
質量指標(x, y, z) | (1,2,2) | (2,1,1) | (2,2,1) | (1,1,1) | (2,1,2) |
(Ⅰ) 利用上表提供的樣本數據估計該批產品的一等品率;
(Ⅱ) 在該樣品的一等品中, 隨機抽取兩件產品,
(1) 用產品編號列出所有可能的結果;
(2) 設事件B為 “在取出的2件產品中, 每件產品的綜合指標S都等于4”, 求事件B發生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某同學大學畢業后,決定利用所學專業進行自主創業,經過市場調查,生產一小型電子產品需投入固定成本2萬元,每生產萬件,需另投入流動成本
萬元,當年產量小于
萬件時,
(萬元);當年產量不小于7萬件時,
(萬元).已知每件產品售價為6元,假若該同學生產的商品當年能全部售完.
(1)寫出年利潤(萬年)關于年產量
(萬件)的函數解析式;(注:年利潤=年銷售收入-固定成本-流動成本)
(2)當年產量約為多少萬件時,該同學的這一產品所獲年利潤最大?最大年利潤是多少?
(取).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已如橢圓E:(
)的離心率為
,點
在E上.
(1)求E的方程:
(2)斜率不為0的直線l經過點,且與E交于P,Q兩點,試問:是否存在定點C,使得
?若存在,求C的坐標:若不存在,請說明理由
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從0,1,2,3,4這五個數中任選三個不同的數組成一個三位數,記X為所組成的三位數各位數字之和.
(1)求X是奇數的概率;
(2)求X的概率分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C的參數方程是(φ為參數,a>0),直線l的參數方程是
(t為參數),曲線C與直線l有一個公共點在x軸上,以坐標原點為極點,x軸的正半軸為極軸建立坐標系.
(1)求曲線C的普通方程;
(2)若點A(ρ1,θ),B(ρ2,θ+),C(ρ3,θ+
)在曲線C上,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com