分析 (1)設AP的中點為E,切點為F,連OE,EF,則|OE|+|EF|=|OF|=2.說明點P的軌跡是以A,B為焦點,長軸長為4的橢圓.然后求解動點P的軌跡方程.
(2)求出$\frac{{y}_{M}}{{y}_{S}}$=$\frac{4+{m}^{2}}{1+{m}^{2}}$,$\frac{{y}_{N}}{{y}_{t}}$=$\frac{4{m}^{2}+1}{{m}^{2}+1}$,利用$\frac{{S}_{1}}{{S}_{2}}$=$\frac{{y}_{M}}{{y}_{S}}$•$\frac{{y}_{N}}{{y}_{t}}$,可得結論.
解答 (1)證明:設AP的中點為E,切點為F,連OE,EF,則|OE|+|EF|=|OF|=2,
故|BP|+|AP|=2(|OE|+|EF|)=4.
所以點P的軌跡是以A,B為焦點,長軸長為4的橢圓.
其中,a=2,c=$\sqrt{3}$,b=1,則動點P的軌跡方程是$\frac{{x}^{2}}{4}+{y}^{2}$=1
(2)解:設直線DM的方程為x=my-2(m≠0),
∵MN為圓O的直徑,∴∠MDN=90°,
∴直線DN的方程為x=-$\frac{1}{m}$y-2,
由$\left\{\begin{array}{l}{x=my-2}\\{{x}^{2}+{y}^{2}=4}\end{array}\right.$得(1+m2)y2-4my=0,∴yM=$\frac{4m}{1+{m}^{2}}$,
由$\left\{\begin{array}{l}{x=my-2}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$得(4+m2)y2-4my=0,∴yS=$\frac{4m}{4+{m}^{2}}$,
∴$\frac{{y}_{M}}{{y}_{S}}$=$\frac{4+{m}^{2}}{1+{m}^{2}}$,∴$\frac{{y}_{N}}{{y}_{t}}$=$\frac{4{m}^{2}+1}{{m}^{2}+1}$,
∴$\frac{{S}_{1}}{{S}_{2}}$=$\frac{{y}_{M}}{{y}_{S}}$•$\frac{{y}_{N}}{{y}_{t}}$=$\frac{4+{m}^{2}}{1+{m}^{2}}$•$\frac{4{m}^{2}+1}{{m}^{2}+1}$,
設s=1+m2,s>1,0<$\frac{3}{s}$<3,
∴$\frac{{S}_{1}}{{S}_{2}}$=(4-$\frac{3}{s}$)(1+$\frac{3}{s}$)∈(4,$\frac{25}{4}$).
點評 本題考查橢圓方程,考查直線與圓、橢圓的位置關系,考查學生的計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $f(x)=2sin(2x-\frac{π}{6})$ | B. | $f(x)=2sin(x+\frac{π}{6})$ | C. | $f(x)=2sin(2x+\frac{π}{3})$ | D. | $f(x)=2sin(2x+\frac{π}{6})$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com