日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)對一切實數x,y均有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0,
(1)求f(0)的值;
(2)求f(x)的解析式;
(3)函數g(x)=xf(x+x)在[0,2]上何處取得極值,最值是多少?
分析:(1)令x=1,y=0,結合f(1)=0,可求f(0)的值;
(2)令y=0,可求函數的解析式;
(3)函數g(x)=xf(x)+x=x3+x2-x,求導函數,確定g(x)在[0,2]上先減后增,由此可得結論.
解答:解:(1)令x=1,y=0,則f(1)-f(0)=2
∵f(1)=0,∴f(0)=-2 
(2)令y=0,則f(x)=f(0)+x(x+1)=x2+x-2  
(3)函數g(x)=xf(x)+x=x3+x2-x,求導函數可得g′(x)=3x2+2x-1
∴當0<x<
1
3
時,g′(x)<0,當
1
3
<x<2時,g′(x)>0,
∴g(x)在[0,2]上先減后增,
∴g(x)max=g(2)=10,g(x)min=g(
1
3
)=-
5
27
點評:本題考查賦值法的運用,考查利用導數求函數的最值,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•青島一模)已知函數f(x)對定義域R內的任意x都有f(x)=f(4-x),且當x≠2時其導函數f′(x)滿足xf′(x)>2f′(x),若2<a<4則(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•綿陽一模)已知函數f(x)定義在區間(-1,1)上,f(
1
2
)=-1,且當x,y∈(-1,1)時,恒有f(x)-f(y)=f(
x-y
1-xy
).又數列{an}滿足,a1=
1
2
,an+1=
2an
1+an2

(I )證明:f(x)在(-1,1)上是奇函數
( II )求f(an)的表達式;
(III)設bn=
1
2log2|f(an+1)
,Tn為數列{bn}的前n項和,若T2n+1-Tn
m
15
(其中m∈N*)對N∈N*恒成立,求m的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•濱州一模)已知函數f(x)=
3
2
sin2x-cos2x-
1
2
,x∈R.
(Ⅰ)求函數f(x)的單調遞減區間;
(Ⅱ)設△ABC的三個內角A,B,C的對邊分別為a,b,c,其中c=2
3
,f(C)=0,若向量
m
=(sinB,2)與向量
n
=(1,-sinA)垂直,求a,b的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•武清區一模)已知函數f(x)對任意的x,y∈R,均有f(x+y)=f(x)f(y),且當x>0時,0<f(x)<1,設M={y|f(y)f(1-2a)>f(1)},N={y|f(ax2+2x-y+3)=1,x∈R},若M∩N=∅,則實數a的取值范圍是
1
2
≤a≤1
1
2
≤a≤1

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•內江一模)已知函數f(x)對任意的x∈R有f(x)+f(-x)=0,且當x>0時,f(x)=ln(x+1),則函數f(x)的大致圖象為(  )

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 五月激情综合网 | 中文字幕亚洲一区二区三区 | 免费的黄色av网站 | 日韩色av| 久久久一区二区三区捆绑sm调教 | 黄页免费看 | 一级免费毛片 | 精品国产免费久久久久久尖叫 | 亚洲精品一区二区三区蜜桃久 | 看全黄大色黄大片老人做 | 一本色道精品久久一区二区三区 | 国产一区二区毛片 | 青青草视频在线免费观看 | 久久三区| 欧美福利一区 | 亚洲精品乱码久久久久久9色 | 爱爱无遮挡 | 国产日韩中文字幕 | 一级在线免费视频 | 亚洲天堂在线视频播放 | 国产精品久久 | 精品免费视频 | 国产亚洲精品美女久久久久久久久久 | 激情欧美日韩一区二区 | 国产一区二区视频在线观看 | 一区二区三区免费看 | 国产黑人在线 | 天天色天天色 | 伊人免费视频 | 国产精品亚欧美一区二区 | 国产单男| 欧美日韩久久久 | 久操不卡| aaa级片| 亚洲一区二区三区视频 | 久久午夜精品影院一区 | 97夜夜操| 伊人夜夜躁av伊人久久 | 91一区二区三区久久国产乱 | 精品久久一区二区三区 | 国产色视频在线观看免费 |