【題目】第 屆夏季奧林匹克運動會將于2016年8月5日
21日在巴西里約熱內盧舉行.下表是近五屆奧運會中國代表團和俄羅斯代表團獲得的金牌數的統計數據(單位:枚).
| 第31屆里約 | 第30屆倫敦 | 第29屆北京 | 第28屆雅典 | 第27屆悉尼 |
中國 | 26 | 38 | 51 | 32 | 28 |
俄羅斯 | 19 | 24 | 24 | 27 | 32 |
(1)根據表格中兩組數據完成近五屆奧運會兩國代表團獲得的金牌數的莖葉圖,并通過莖葉圖比較兩國代表團獲得的金牌數的平均值及分散程度(不要求計算出具體數值,給出結論即可);
(2)下表是近五屆奧運會中國代表團獲得的金牌數之和 (從第
屆算起,不包括之前已獲得的金牌數)隨時間
(時間代號)變化的數據:
屆 | 27 | 28 | 29 | 30 | 31 |
時間代號(x) | 1 | 2 | 3 | 5 | |
金牌數之和(y枚) | 28 | 60 | 111 | 149 | 175 |
作出散點圖如下:
①由圖中可以看出,金牌數之和 與時間代號
之間存在線性相關關系,請求出
關于
的線性回歸方程;
②利用①中的回歸方程,預測2020年第32屆奧林匹克運動會中國代表團獲得的金牌數.
參考數據:,
,
.
附:對于一組數據 ,
,
,
,其回歸直線
的斜率的最小二乘估計為
.
【答案】(1)詳見解析;(2)①.
【解析】
(1)根據題意,畫出莖葉圖,通過莖葉圖得出概率結論;
(2)①計算線性回歸方程的系數、
,寫出線性回歸方程,
②利用回歸方程計算x=6時的值再減去175即可.
解:(1)兩國代表團獲得的金牌數的莖葉圖如下,
通過莖葉圖可以看出,中國代表團獲得的金牌數的平均值高于俄羅斯代表團獲得的金牌數的平均值;俄羅斯代表團獲得的金牌數比較集中,中國代表團獲得的金牌數比較分散;
(2)①計算=
=
=38.3,
所以=
﹣
=104.6﹣38.3×3=﹣10.3;
所以金牌數之和y關于時間x的線性回歸方程為=38.3x﹣10.3
②由①知,當x=6時,中國代表團獲得的金牌數之和的預報值=38.3×6﹣10.3=219.5,故預測2020年第32屆奧林匹克運動會中國代表團獲得的金牌數219.5﹣175=44.5≈45枚.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax2﹣x,若對任意x1 , x2∈[2,+∞),且x1≠x2 , 不等式 >0恒成立,則實數a的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設關于x的方程x2﹣ax﹣1=0和x2﹣x﹣2a=0的實根分別為x1、x2和x3、x4 , 若x1<x3<x2<x4 , 則實數a的取值范圍為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校在高二年級實行選課走班教學,學校為學生提供了多種課程,其中數學科提供5種不同層次的課程,分別稱為數學1、數學2、數學3、數學4、數學5,每個學生只能從這5種數學課程中選擇一種學習,該校高二年級1800名學生的數學選課人數統計如表:
課程 | 數學1 | 數學2 | 數學3 | 數學4 | 數學5 | 合計 |
選課人數 | 180 | 540 | 540 | 360 | 180 | 1800 |
為了了解數學成績與學生選課情況之間的關系,用分層抽樣的方法從這1800名學生中抽取了10人進行分析.
(1)從選出的10名學生中隨機抽取3人,求這3人中至少有2人選擇數學2的概率;
(2)從選出的10名學生中隨機抽取3人,記這3人中選擇數學2的人數為X,選擇數學1的人數為Y,設隨機變量ξ=X﹣Y,求隨機變量ξ的分布列和數學期望E(ξ).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,設拋物線 :
的準線
與
軸交于橢圓
:
的右焦點
,
為
的左焦點.橢圓的離心率為
,拋物線
與橢圓
交于
軸上方一點
,連接
并延長交
于點
,
為
上一動點,且在
,
之間移動.
(1)當 時,求
的方程;
(2)若 的邊長恰好是三個連續的自然數。求
到直線
距離的最大值以及此時
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中內動點P(x,y)到圓F:x2+(y﹣1)2=1的圓心F的距離比它到直線y=﹣2的距離小1.
(1)求動點P的軌跡方程;
(2)設點P的軌跡為曲線E,過點F的直線l的斜率為k,直線l交曲線E于A,B兩點,交圓F于C,D兩點(A,C兩點相鄰).
①若 =t
,當t∈[1,2]時,求k的取值范圍;
②過A,B兩點分別作曲線E的切線l1 , l2 , 兩切線交于點N,求△ACN與△BDN面積之積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2016年上半年,股票投資人袁先生同時投資了甲、乙兩只股票,其中甲股票賺錢的概率為 ,賠錢的概率是
;乙股票賺錢的概率為
,賠錢的概率為
.對于甲股票,若賺錢則會賺取5萬元,若賠錢則損失4萬元;對于乙股票,若賺錢則會賺取6萬元,若賠錢則損失5萬元.
(Ⅰ)求袁先生2016年上半年同時投資甲、乙兩只股票賺錢的概率;
(Ⅱ)試求袁先生2016年上半年同事投資甲、乙兩只股票的總收益的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線E:y2=2px(p>0)的準線與x軸交于點K,過點K作圓(x﹣5)2+y2=9的兩條切線,切點為M,N,|MN|=3
(1)求拋物線E的方程;
(2)設A,B是拋物線E上分別位于x軸兩側的兩個動點,且 (其中O為坐標原點).
①求證:直線AB必過定點,并求出該定點Q的坐標;
②過點Q作AB的垂線與拋物線交于G,D兩點,求四邊形AGBD面積的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com