已知函數定義域為
,若對于任意的
,
,都有
,且
>0時,有
>0.
⑴證明: 為奇函數;
⑵證明: 在
上為單調遞增函數;
⑶設=1,若
<
,對所有
恒成立,求實數
的取值范圍.
科目:高中數學 來源: 題型:解答題
(12分) 若二次函數f(x)=ax2+bx+c(a≠0)的圖象關于y軸對稱,
且f(-2)>f(3),設m>-n>0.
(1) 試證明函數f(x)在(0,+∞)上是減函數;
(2) 試比較f(m)和f(n)的大小,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般
情況下,大橋上的車流速度(單位:千米/小時)是車流密度
(單位:輛/千
米)的函數.當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度
為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時.研究表明:
當時,車流速度
是車流密度
的一次函數.
(Ⅰ)當時,求函數
的表達式;
(Ⅱ)當車流密度為多大時,車流量(單位時間內通過橋上某觀測點的車輛數,
單位:輛/小時)可以達到最大,并求出最大值.(精確到1輛/小時)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com