日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

已知B(-1,1)是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)上一點(diǎn),且點(diǎn)B到橢圓的兩個(gè)焦點(diǎn)距離之和為4;
(1)求橢圓方程;
(2)設(shè)A為橢圓的左頂點(diǎn),直線AB交y軸于點(diǎn)C,過C作斜率為k的直線l交橢圓于D,E兩點(diǎn),若
S△CBD
S△CAE
=
1
6
,求實(shí)數(shù)k的值.
(1)由題意,2a=4,∴a=2,
∵B(-1,1)是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)上一點(diǎn),
1
4
+
1
b2
=1

b2=
4
3

∴橢圓方程為
x2
4
+
3y2
4
=1

(2)由題意A(-2,0),B(-1,1),則AB的方程為y=x+2,
∴C(0,2),∴
|CB|
|CA|
=
1
2

S△CBD
S△CAE
=
1
6
,∴
|CD|
|CE|
=
1
3

設(shè)D(x1,y1),E(x2,y2),則x2=3x1
若CD斜率不存在,方程為x=0,D(0,
2
3
),E(0,-
2
3
),
|CD|
|CE|
=
3
-1
3
+1
1
3

若CD斜率存在,設(shè)y=kx+2,代入橢圓方程,得到(3k2+1)x2+12kx+8=0
∴x1+x2=
-12k
3k2+1
,x1x2=
8
3k2+1

∵x2=3x1
k=±
2
6
3
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若動(dòng)點(diǎn)()在曲線上變化,則的最大值為(   )
A.B.C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓E:
x2
a2
+
y2
3
=1
(a
3
)的離心率e=
1
2
.直線x=t(t>0)與曲線 E交于不同的兩點(diǎn)M,N,以線段MN 為直徑作圓 C,圓心為 C.
(1)求橢圓E的方程;
(2)若圓C與y軸相交于不同的兩點(diǎn)A,B,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若AB為拋物線y2=2px(p>0)的動(dòng)弦,且|AB|=a(a>2p),則AB的中點(diǎn)M到y(tǒng)軸的最近距離是(  )
A.
a
2
B.
p
2
C.
a+p
2
D.
a-p
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,并且直線y=x+b是拋物線C2:y2=4x的一條切線.
(Ⅰ)求橢圓C1的方程.
(Ⅱ)過點(diǎn)S(0,-
1
3
)
的動(dòng)直線l交橢圓C1于A、B兩點(diǎn),試問:在直角坐標(biāo)平面上是否存在一個(gè)定點(diǎn)T,使得以AB為直徑的圓恒過定點(diǎn)T?若存在求出T的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線C:y2=2px和⊙M:(x-4)2+y2=1,過拋物線C上一點(diǎn)H(x0,y0)作兩條直線與⊙M相切于A、B兩點(diǎn),分別交拋物線為E、F兩點(diǎn),圓心點(diǎn)M到拋物線準(zhǔn)線的距離為
17
4

(1)求拋物線C的方程;
(2)當(dāng)∠AHB的角平分線垂直x軸時(shí),求直線EF的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知定點(diǎn)A(2,0),它與拋物線y2=x上的動(dòng)點(diǎn)P連線的中點(diǎn)M的軌跡方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的一個(gè)焦點(diǎn)為F(1,0),且過點(diǎn)(2,0).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若AB為垂直于x軸的動(dòng)弦,直線l:x=4與x軸交于點(diǎn)N,直線AF與BN交于點(diǎn)M.
(ⅰ)求證:點(diǎn)M恒在橢圓C上;
(ⅱ)求△AMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為e=
3
2
,且過點(diǎn)(
3
1
2

(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線l:y=kx+m(k≠0,m>0)與橢圓交于P,Q兩點(diǎn),且以PQ為對(duì)角線的菱形的一頂點(diǎn)為(-1,0),求:△OPQ面積的最大值及此時(shí)直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 久久99深爱久久99精品 | 美女主播精品视频一二三四 | 毛片网子 | 龙珠z在线观看 | 爱色av | 精品自拍视频 | 国产精品视频污 | 超碰天天 | 射久久 | 一区二区三区日韩精品 | 久久成人一区 | 久久综合狠狠综合久久综合88 | 最新中文字幕 | 成人乱淫av日日摸夜夜爽节目 | 国产一区二区视频在线观看 | 久久亚洲一区二区三区成人国产 | 日本精品999 | 伊人精品影院 | 免费成人高清在线视频 | 色狠狠一区 | 毛片毛片毛片毛片毛片毛片 | 久久久久国产 | 国产精品一区二区免费视频 | 日韩在线高清视频 | 欧美在线网站 | 国产精品正在播放 | 久久综合九色综合欧美狠狠 | 日韩一区二区视频在线观看 | 天天操综合网 | 99国产精品久久久久老师 | 日韩在线观看不卡 | 欧美色视 | 热久久久久 | 免费看91 | 国产成人精品一区二三区四区五区 | 久草免费在线视频 | 久久噜噜噜精品国产亚洲综合 | 欧美在线观看一区 | 午夜社区 | 国产日韩欧美一区 | 久久久91精品国产一区二区 |