日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為e=
3
2
,且過點(
3
1
2

(Ⅰ)求橢圓的方程;
(Ⅱ)設直線l:y=kx+m(k≠0,m>0)與橢圓交于P,Q兩點,且以PQ為對角線的菱形的一頂點為(-1,0),求:△OPQ面積的最大值及此時直線l的方程.
(Ⅰ)∵e=
3
2
,∴c=
3
2
a,∴b2=a2-c2=
a2
4
,故所求橢圓為:
x2
a2
+
4y2
a2
=1

又橢圓過點 (
3
1
2
),∴
3
a2
+
1
a2
=1
,∴a2=4,b2=1,
x2
4
+y2=1

(Ⅱ)設P(x1,y1),Q(x2,y2),PQ的中點為(x0,y0
將直線y=kx+m與
x2
4
+y2=1
聯立得 (1+4k2)x2+8kmx+4m2-4=0,
∵△=16(4k2+1-m2)>0,即 4k2+1-m2>0 ①,
又x0=
x1+x2
2
=
-4km
1+4k2
,y0=
y1+y2
2
=
m
1+4k2
,又點[-1,0]不在橢圓OE上.
依題意有
y0-0
x0-(-1)
=-
1
k
,整理得3km=4k2+1 ②. 由①②可得k2
1
5

∵m>0,∴k>0,∴k>
5
5

設O到直線l的距離為d,
則S△OPQ=
1
2
•d•|PQ|
=
1
2
m
1+k2
1+k2
16(4k2+1-m2)
1+4k2

=
2
(4k2+1)(5k2-1)
9k2
=
2
20+
1
k2
-
1
k4
9

1
k2
=
1
2
時,△OPQ 的面積取最大值1,此時k=
2
,m=
3
2
2

∴直線方程為 y=
2
x+
3
2
2
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知B(-1,1)是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)上一點,且點B到橢圓的兩個焦點距離之和為4;
(1)求橢圓方程;
(2)設A為橢圓的左頂點,直線AB交y軸于點C,過C作斜率為k的直線l交橢圓于D,E兩點,若
S△CBD
S△CAE
=
1
6
,求實數k的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知點B(0,1),A,C為橢圓C:
x2
a2
+y2
=1(a>1)上的兩點,△ABC是以B為直角頂點的直角三角形.
(1)△ABC能否為等腰三角形?若能,這樣的三角形有幾個?
(2)當a=2時,求線段AC的中垂線l在x軸上截距的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓G:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
6
3
,右焦點為(2
2
,0).斜率為1的直線l與橢圓G交于A,B兩點,以AB為底邊作等腰三角形,頂點為P(-3,2).
(Ⅰ)求橢圓G的方程;
(Ⅱ)求△PAB的面積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓C的左、右焦點坐標分別是(-
2
,0)
(
2
,0)
,離心率是
6
3
,直線y=t橢圓C交與不同的兩點M,N,以線段為直徑作圓P,圓心為P.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若圓P與x軸相切,求圓心P的坐標;
(Ⅲ)設Q(x,y)是圓P上的動點,當T變化時,求y的最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓┍的方程為
x2
a2
+
y2
b2
=1(a>b>0),點P的坐標為(-a,b).
(1)若直角坐標平面上的點M、A(0,-b),B(a,0)滿足
PM
=
1
2
PA
+
PB
),求點M的坐標;
(2)設直線l1:y=k1x+p交橢圓┍于C、D兩點,交直線l2:y=k2x于點E.若k1•k2=-
b2
a2
,證明:E為CD的中點;
(3)對于橢圓┍上的點Q(acosθ,bsinθ)(0<θ<π),如果橢圓┍上存在不同的兩個交點P1、P2滿足
PP1
+
PP2
=
PQ
,寫出求作點P1、P2的步驟,并求出使P1、P2存在的θ的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設橢圓M:
y2
a2
+
x2
b2
=1
(a>b>0)經過點P(1,
2
)
,其離心率e=
2
2

(Ⅰ)求橢圓M的方程;
(Ⅱ)直線l:y=
2
x+m
交橢圓于A、B兩點,且△PAB的面積為
2
,求m的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

過拋物線y2=2px(p>0)的焦點F的直線與拋物線交于A,B兩點,拋物線準線與x軸交于C點,若∠CBF=90°,則|AF|-|BF|的值為(  )
A.
p
2
B.pC.
3p
2
D.2p

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知點A(1,1)是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)上一點,F1,F2是橢圓的兩焦點,且滿足|AF1|+|AF2|=4.
(I)求橢圓的標準方程;
(II)求過A(1,1)與橢圓相切的直線方程;
(III)設點C、D是橢圓上兩點,直線AC、AD的傾斜角互補,試判斷直線CD的斜率是否為定值?若是定值,求出定值;若不是定值,說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久99精品久久久久久琪琪 | 欧美成人一区二区三区 | 波多野结衣一区二区三区四区 | 国产精品精品视频一区二区三区 | www.国产 | 亚洲精品v | 久久精品123 | 日韩av网站在线 | 欧美激情一区二区三区在线观看 | 日韩欧美一区二区三区免费观看 | 色悠悠久久 | 毛片网站在线 | 成人av一区二区三区 | 欧美精品网站 | 91精品一区二区三区久久久久久 | 亚洲成人精品久久 | 能看的毛片 | 国产一区二区影院 | 国产精品视频久久久 | 亚洲国产高清视频 | 国内精品久久久久久久97牛牛 | 成人欧美一区二区三区色青冈 | 日韩3级 | 国产成人久久精品一区二区三区 | 日本超碰| 日本一区二区三区视频免费看 | 国产亚洲精品久久久456 | 黄色一级免费电影 | 一区二区三区影院 | 久久另类ts人妖一区二区 | av毛片| 亚洲精品一区久久久久久 | 欧美3区 | 日韩伦理视频 | 日韩一级黄色大片 | 久久白虎 | 国产一级片在线播放 | 国99久9在线视频播放免费 | 亚洲国产欧美一区二区三区久久 | 欧美99| 天天影视综合 |