【題目】如圖,四棱錐中,底面
為梯形,
,
,
,平面
平面
,
.
(1)求證: ;
(2)是否存在點,到四棱錐
各頂點的距離都相等?說明理由.
【答案】(1)見解析;(2)見解析.
【解析】試題分析:(1),平面
平面
,所以
平面
,得
;(2)點
是三個直角三角形
、
和
的共同斜邊
的中點,所以
,所以存在點
(即點
)到四棱錐
各頂點的距離都相等.
試題解析:
(1)證明:設的中點為
,連結
,在梯形
中,
因為,
,
所以為等邊三角形,
又
所以四邊形為菱形,
因為,
,所以
所以,
又平面平面
,
是交線,
平面
所以平面
又因為 平面
,所以
(2)解:因為,
,
,所以
平面
所以
所以 為直角三角形,
連結 ,由(1)知
,
所以
所以 為直角三角形,
.
所以點 是三個直角三角形
、
和
的共同斜邊
的中點,
所以,
所以存在點(即點
)到四棱錐
各頂點的距離都相等.
科目:高中數學 來源: 題型:
【題目】給定橢圓,稱圓
為橢圓
的“伴隨圓”.已知點
是橢圓
上的點
(1)若過點的直線
與橢圓
有且只有一個公共點,求
被橢圓
的伴隨圓
所截得的弦長:
(2)是橢圓
上的兩點,設
是直線
的斜率,且滿足
,試問:直線
是否過定點,如果過定點,求出定點坐標,如果不過定點,試說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的左、右焦點分別是
、
,離心率
,過點
的直線交橢圓
于
、
兩點,
的周長為16.
(1)求橢圓的方程;
(2)已知為原點,圓
:
(
)與橢圓
交于
、
兩點,點
為橢圓
上一動點,若直線
、
與
軸分別交于
、
兩點,求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,直線
的參數方程為
(
為參數),以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,并使得它與直角坐標系
有相同的長度單位,曲線
的極坐標方程為
.
(1)求直線的普通方程和曲線
的直角坐標方程;
(2)設曲線與直線
交于
、
兩點,且
點的坐標為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】當前,網購已成為現代大學生的時尚。某大學學生宿舍4人參加網購,約定:每個人通過擲一枚質地均勻的骰子決定自己去哪家購物,擲出點數為5或6的人去淘寶網購物,擲出點數小于5的人去京東商城購物,且參加者必須從淘寶網和京東商城選擇一家購物.
(1)求這4個人中恰有1人去淘寶網購物的概率;
(2)用分別表示這4個人中去淘寶網和京東商城購物的人數,記
,求隨機變量
的分布列與數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地區某農產品近幾年的產量統計如下表:
(1)根據表中數據,建立關于
的線性回歸方程
;
(2)若近幾年該農產品每千克的價格 (單位:元)與年產量
滿足的函數關系式為
,且每年該農產品都能售完.
①根據(1)中所建立的回歸方程預測該地區年該農產品的產量;
②當為何值時,銷售額
最大?
附:對于一組數據,其回歸直線
的斜率和截距的最小二乘估計分別為:
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某大型水上樂園內有一塊矩形場地米,
米,以
為直徑的半圓
和半圓
(半圓在矩形
內部)為兩個半圓形水上主題樂園,
都建有圍墻,游客只能從線段
處進出該主題樂園.為了進一步提高經濟效益,水上樂園管理部門決定沿著
修建不銹鋼護欄,沿著線段
修建該主題樂園大門并設置檢票口,其中
分別為
上的動點,
,且線段
與線段
在圓心
和
連線的同側.已知弧線部分的修建費用為
元/米,直線部門的平均修建費用為
元/米.
(1)若米,則檢票等候區域(其中陰影部分)面積為多少平方米?
(2)試確定點的位置,使得修建費用最低.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現有六支足球隊參加單循環比賽(即任意兩支球隊只踢一場比賽),第一周的比賽中
,各踢了
場,
各踢了
場,
踢了
場,且
隊與
隊未踢過,
隊與
隊也未踢過,則在第一周的比賽中,
隊踢的比賽的場數是( )
A. B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com