【題目】給定橢圓,稱圓
為橢圓
的“伴隨圓”.已知點(diǎn)
是橢圓
上的點(diǎn)
(1)若過(guò)點(diǎn)的直線
與橢圓
有且只有一個(gè)公共點(diǎn),求
被橢圓
的伴隨圓
所截得的弦長(zhǎng):
(2)是橢圓
上的兩點(diǎn),設(shè)
是直線
的斜率,且滿足
,試問(wèn):直線
是否過(guò)定點(diǎn),如果過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo),如果不過(guò)定點(diǎn),試說(shuō)明理由。
【答案】(1) (2)過(guò)原點(diǎn)
【解析】試題分析:(1)分析直線的斜率是否存在,若不存在不符合題意,當(dāng)存在時(shí)設(shè)直線,根據(jù)直線與圓的關(guān)系中弦心距,半徑,半弦長(zhǎng)構(gòu)成的直角三角形求解即可;(2)設(shè)直線
的方程分別為
,設(shè)點(diǎn)
,聯(lián)立
得得
同理
,計(jì)算
,同理
因?yàn)?/span>
,可得
,從而可證.
試題解析:
(1)因?yàn)辄c(diǎn)是橢圓
上的點(diǎn).
即橢圓
伴隨圓
得
同理
,計(jì)算
當(dāng)直線的斜率不存在時(shí):顯然不滿足
與橢圓
有且只有一個(gè)公共點(diǎn)
當(dāng)直接的斜率存在時(shí):設(shè)直線
與橢圓
聯(lián)立得
由直線與橢圓
有且只有一個(gè)公共點(diǎn)得
解得,由對(duì)稱性取直線
即
圓心到直線的距離為
直線被橢圓
的伴隨圓
所截得的弦長(zhǎng)
(2)設(shè)直線的方程分別為
設(shè)點(diǎn)
聯(lián)立得
則得
同理
斜率
同理因?yàn)?/span>
所以
三點(diǎn)共線
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的底面
是平行四邊形,側(cè)面
是邊長(zhǎng)為2的正三角形,
,
.
(Ⅰ)求證:平面平面
;
(Ⅱ)設(shè)是棱
上的點(diǎn),當(dāng)
平面
時(shí),求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在上的函數(shù)
,
,
其中,設(shè)兩曲線
有公共點(diǎn),且在公共點(diǎn)處的切線相同.
(Ⅰ)若,求
的值;
(Ⅱ)用表示
,并求
的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中,四邊形是等腰梯形,
,
,
平面
,
,
.
(1)求證: 平面
;
(2)求直線與平面
所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
已知極坐標(biāo)系的極點(diǎn)在直角坐標(biāo)系的原點(diǎn)處,極軸與軸的非負(fù)半軸重合,直線
的參數(shù)方程為
(
為參數(shù)),曲線
的極坐標(biāo)方程為
.
(1)寫(xiě)出曲線的直角坐標(biāo)方程和直線
的普通方程;
(2)設(shè),
分別是直線
與曲線
上的點(diǎn),求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是橢圓
的左、右焦點(diǎn),點(diǎn)
在橢圓
上,且離心率為
(1)求橢圓的方程;
(2)若的角平分線所在的直線
與橢圓
的另一個(gè)交點(diǎn)為
為橢圓
上的一點(diǎn),當(dāng)
面積最大時(shí),求點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為
,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)
,
為頂點(diǎn)的三角形的周長(zhǎng)為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)該橢圓與
軸的交點(diǎn)為
,
(點(diǎn)
位于點(diǎn)
的上方),直線
與橢圓
相交于不同的兩點(diǎn)
,求證:直線
與直線
的交點(diǎn)
在定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面
為梯形,
,
,
,平面
平面
,
.
(1)求證: ;
(2)是否存在點(diǎn),到四棱錐
各頂點(diǎn)的距離都相等?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某省高中男生身高統(tǒng)計(jì)調(diào)查數(shù)據(jù)顯示:全省名男生的身高服從正態(tài)分布
,現(xiàn)從該生某校高三年級(jí)男生中隨機(jī)抽取
名測(cè)量身高,測(cè)量發(fā)現(xiàn)被測(cè)學(xué)生身高全部介于
和
之間,將測(cè)量結(jié)果按如下方式分成
組:第一組
,第二組
,…,第六組
,下圖是按照上述分組方法得到的頻率分布直方圖.
(1)求該學(xué)校高三年級(jí)男生的平均身高;
(2)求這名男生中身高在
以上(含
)的人數(shù);
(3)從這名男生中身高在
以上(含
)的人中任意抽取
人,該
中身高排名(從高到低)在全省前
名的人數(shù)記為
,求
的數(shù)學(xué)期望.
(附:參考數(shù)據(jù):若服從正態(tài)分布
,則
,
,
.)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com