【題目】定義:如果一個數(shù)列從第二項起,后一項與前一項的和相等且為同一常數(shù),這樣的數(shù)列叫“等和數(shù)列”,這個常數(shù)叫公和.給出下列命題:
①“等和數(shù)列”一定是常數(shù)數(shù)列;
②如果一個數(shù)列既是等差數(shù)列又是“等和數(shù)列”,則這個數(shù)列一定是常數(shù)列;
③如果一個數(shù)列既是等比數(shù)列又是“等和數(shù)列”,則這個數(shù)列一定是常數(shù)列;
④數(shù)列是“等和數(shù)列”且公和
,則其前
項之和
;
其中,正確的命題為__________.(請?zhí)畛鏊姓_命題的序號)
【答案】②
【解析】
利用“等和數(shù)列”的定義對每一個命題逐一分析判斷得解.
①“等和數(shù)列”不一定是常數(shù)數(shù)列,如數(shù)列是“等和數(shù)列”,但是不是常數(shù)數(shù)列,所以該命題錯誤;
②如果一個數(shù)列既是等差數(shù)列又是“等和數(shù)列”,則這個數(shù)列一定是常數(shù)列.如果數(shù)列是等差數(shù)列,所以
,如果數(shù)列
是“等和數(shù)列”,所以
所以
所以
,所以
,所以這個數(shù)列一定是常數(shù)列,所以該命題是正確的.
③如果一個數(shù)列既是等比數(shù)列又是“等和數(shù)列”,則這個數(shù)列一定是常數(shù)列. 如果數(shù)列是等比數(shù)列,所以
,如果數(shù)列
是“等和數(shù)列”,所以
所以
所以
,所以
,所以這個數(shù)列不一定是常數(shù)列,所以該命題是錯誤的.
④數(shù)列是“等和數(shù)列”且公和
,則其前
項之和
,是錯誤的.舉例“等和數(shù)列”
其
,所以該命題是錯誤的.
故答案為:②
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐中,底面ABCD為直角梯形,
,
,
,點E為AD的中點,
,
平面ABCD,且
(1)求證:;
(2)線段PC上是否存在一點F,使二面角的余弦值是
?若存在,請找出點F的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.已知點
的極坐標為
,直線
的極坐標方程為
,且點
在直線
上.
(1)求的值及直線
的直角坐標方程;
(2)圓的極坐標方程為
,試判斷直線
與圓
的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)向左平移
個單位,得到
的圖象,則
滿足( )
A.圖象關(guān)于點對稱,在區(qū)間
上為增函數(shù)
B.函數(shù)最大值為2,圖象關(guān)于點對稱
C.圖象關(guān)于直線對稱,在
上的最小值為1
D.最小正周期為,
在
有兩個根
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的一個焦點與拋物線
的焦點重合,且過點
.過點
的直線
交橢圓
于
,
兩點,
為橢圓的左頂點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)求面積的最大值,并求此時直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
有極值,且函數(shù)
的極值點是
的極值點,其中
是自然對數(shù)的底數(shù).(極值點是指函數(shù)取得極值時對應(yīng)的自變量的值)
(1)求關(guān)于
的函數(shù)關(guān)系式;
(2)當時,若函數(shù)
的最小值為
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列同時滿足:①對于任意的正整數(shù)
,
恒成立;②對于給定的正整數(shù)
,
對于任意的正整數(shù)
恒成立,則稱數(shù)列
是“
數(shù)列”.
(1)已知判斷數(shù)列
是否為“
數(shù)列”,并說明理由;
(2)已知數(shù)列是“
數(shù)列”,且存在整數(shù)
,使得
,
,
,
成等差數(shù)列,證明:
是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為定義在
上的奇函數(shù).
(Ⅰ)求的解析式;
(Ⅱ)判斷在定義域
上的單調(diào)性,并用函數(shù)單調(diào)性定義給予證明;
(Ⅲ)若關(guān)于的方程
在
上有解,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高二期中考試后,教務(wù)處計劃對全年級數(shù)學(xué)成績進行統(tǒng)計分析,從男、女生中各隨機抽取100名學(xué)生,分別制成了男生和女生數(shù)學(xué)成績的頻率分布直方圖,如圖所示.
(1)若所得分數(shù)大于等于80分認定為優(yōu)秀,求男、女生優(yōu)秀人數(shù)各有多少人?
(2)在(1)中的優(yōu)秀學(xué)生中用分層抽樣的方法抽取5人,從這5人中任意任取2人,求至少有1名男生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com