【題目】已知橢圓的右焦點F與拋物線
焦點重合,且橢圓的離心率為
,過
軸正半軸一點
且斜率為
的直線
交橢圓于
兩點.
(1)求橢圓的標準方程;
(2)是否存在實數使以線段
為直徑的圓經過點
,若存在,求出實數
的值;若不存在說明理由.
科目:高中數學 來源: 題型:
【題目】如圖為一個正方體與一個半球
構成的組合體,半球
的底面圓與該正方體的上底面
的四邊相切,
與正方形
的中心重合.將此組合體重新置于一個球
中(球
未畫出),使該正方體的下底面
的頂點均落在球
的表面上,半球
與球
內切,設切點為
,若正四棱錐
的表面積為
,則球
的表面積為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓的左右頂點分別是
,離心率為
,設點
,連接
交橢圓于點
,坐標原點是
.
(1)證明: ;
(2)設三角形的面積為
,四邊形
的面積為
, 若
的最小值為1,求橢圓的標準方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知袋子中放有大小和形狀相同的小球若干,其中標號為0的小球1個,標號為1的小球1個,標號為2的小球個.若從袋子中隨機抽取1個小球,取到標號為2的小球的概率是
.
(Ⅰ)求的值;
(Ⅱ)從袋子中不放回地隨機抽取2個小球,記第一次取出的小球標號為,第二次取出的小球標號為
.求在區間
內任取2個實數
,
,求事件“
恒成立”的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】研究變量,
得到一組樣本數據,進行回歸分析,有以下結論
①殘差平方和越小的模型,擬合的效果越好;
②用相關指數來刻畫回歸效果,
越小說明擬合效果越好;
③線性回歸方程對應的直線至少經過其樣本數據點中的一個點;
④若變量和
之間的相關系數為
,則變量
和
之間的負相關很強.
以上正確說法的個數是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了研究一種新藥的療效,選100名患者隨機分成兩組,每組各50名,一組服藥,另一組不服藥.一段時間后,記錄了兩組患者的生理指標x和y的數據,并制成下圖,其中“*”表示服藥者,“+”表示未服藥者.
(1)從服藥的50名患者中隨機選出一人,求此人指標x的值小于1.7的概率;
(2)試判斷這100名患者中服藥者指標y數據的方差與未服藥者指標y數據的方差的大小.(只需寫出結論)
(3)若指標x小于1.7且指標y大于60就說總生理指標正常(例如圖中B、D兩名患者的總生理指標正常),根據上圖,完成下面列聯表,并判斷能否有95%的把握認為總生理指標正常與是否服藥有關,說明理由;
總生理指標正常 | 總生理指標不正常 | 總計 | |
服藥 | |||
不服藥 | |||
總計 |
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
附:
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com