【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,已知曲線
(
為參數),將
上的所有點的橫坐標、縱坐標分別伸長為原來的
和
倍后得到曲線
.以平面直角坐標系
的原點
為極點,
軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線
.
(1)試寫出曲線的極坐標方程與曲線
的參數方程;
(2)在曲線上求一點
,使點
到直線
的距離最小,并求此最小值.
科目:高中數學 來源: 題型:
【題目】某顏料公司生產、
兩種產品,其中生產每噸
產品,需要甲染料
噸,乙染料
噸,丙染料
噸,生產每噸
產品,需要甲染料
噸,乙染料
噸,丙染料
噸,且該公司一天之內甲、乙、丙三種染料的用量分別不超過
噸、
噸、
噸,如果
產品的利潤為
元/噸,
產品的利潤為
元/噸,則該顏料公司一天內可獲得的最大利潤為( )
A. 元 B.
元 C.
元 D.
元
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知△ABC的頂點A(5,1),AB邊上的中線CM所在直線方程為2x﹣y﹣5=0,AC邊上的高BH所在直線方程為x﹣2y﹣5=0.求:
(1)頂點C的坐標;
(2)直線BC的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖半圓柱的底面半徑和高都是1,面
是它的軸截面(過上下底面圓心連線
的平面),
分別是上下底面半圓周上一點.
(1)證明:三棱錐體積
,并指出
和
滿足什么條件時有
(2)求二面角平面角的取值范圍,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓的右焦點為
,離心率為
,過點
且與
軸垂直的直線被橢圓截得的線段長為
.
(1)求橢圓的方程;
(2)若上存在兩點
,橢圓
上存在兩個點
滿足:
三點共線,
三點共線且
,求四邊形
的面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】△ABC的內角A,B,C所對的邊分別為a,b,c.且 =(cos(A﹣B),﹣sin(A﹣B)),
=(cosB,sinB),若
=﹣
. (Ⅰ)求sin A的值;
(Ⅱ)若a=4 ,b=5,求向量
在
方向上的投影.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】過原點O的圓C,與x軸相交于點A(4,0),與y軸相交于點B(0,2).
(1)求圓C的標準方程;
(2)直線l過B點與圓C相切,求直線l的方程,并化為一般式.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com