【題目】某顏料公司生產(chǎn)、
兩種產(chǎn)品,其中生產(chǎn)每噸
產(chǎn)品,需要甲染料
噸,乙染料
噸,丙染料
噸,生產(chǎn)每噸
產(chǎn)品,需要甲染料
噸,乙染料
噸,丙染料
噸,且該公司一天之內(nèi)甲、乙、丙三種染料的用量分別不超過
噸、
噸、
噸,如果
產(chǎn)品的利潤為
元/噸,
產(chǎn)品的利潤為
元/噸,則該顏料公司一天內(nèi)可獲得的最大利潤為( )
A. 元 B.
元 C.
元 D.
元
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A、B、C所對的邊分別為a、b、c,已知a=1,b=2, cosC=.
(I) 求△ABC的周長; (II)求cos(A﹣C)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,已知
底面
,異面直線
和
所成角等于
.
(1)求證: 平面平面
;
(2)求直線和平面
所成角的正弦值;
(3) 在棱上是否存在一點
,使得平面
與平面
所成銳二面角的正切值為
?若存在,指出點
在棱
上的位置,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|< )的部分圖象如圖所示.
(1)求f(x)> 在x∈[0,π]上的解集;
(2)設(shè)g(x)=2 cos2x+f(x),g(α)=
+
,α∈(
,
),求sin2α的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】國內(nèi)某知名連鎖店分店開張營業(yè)期間,在固定的時間段內(nèi)消費達到一定標準的顧客可進行一次抽獎活動,隨著抽獎活動的有效開展,參與抽獎活動的人數(shù)越來越多,該分店經(jīng)理對開業(yè)前天參加抽獎活動的人數(shù)進行統(tǒng)計,
表示開業(yè)第
天參加抽獎活動的人數(shù),得到統(tǒng)計表格如下:
經(jīng)過進一步統(tǒng)計分析,發(fā)現(xiàn)與
具有線性相關(guān)關(guān)系.
(1)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于
的線性回歸方程
;
(2)若該分店此次抽獎活動自開業(yè)始,持續(xù)天,參加抽獎的每位顧客抽到一等獎(價值
元獎品)的概率為
,抽到二等獎(價值
元獎品)的概率為
,抽到三等獎(價值
元獎品)的概率為
.
試估計該分店在此次抽獎活動結(jié)束時送出多少元獎品?
參考公式: ,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)數(shù)列{an}為等比數(shù)列,數(shù)列{bn}滿足bn=na1+(n﹣1)a2+…+2an﹣1+an , n∈N* , 已知b1=m, ,其中m≠0.
(1)求數(shù)列{an}的首項和公比;
(2)當m=1時,求bn;
(3)設(shè)Sn為數(shù)列{an}的前n項和,若對于任意的正整數(shù)n,都有Sn∈[1,3],求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【河北省衡水中學2017屆高三上學期五調(diào)】已知橢圓,圓
的圓心
在橢圓
上,點
到橢圓
的右焦點的距離為
.
(1)求橢圓的方程;
(2)過點作互相垂直的兩條直線
,且
交橢圓
于
兩點,直線
交圓
于
兩點,且
為
的中點,求
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,已知曲線
(
為參數(shù)),將
上的所有點的橫坐標、縱坐標分別伸長為原來的
和
倍后得到曲線
.以平面直角坐標系
的原點
為極點,
軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線
.
(1)試寫出曲線的極坐標方程與曲線
的參數(shù)方程;
(2)在曲線上求一點
,使點
到直線
的距離最小,并求此最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com