【題目】已知函數.
(1)求證:函數是偶函數;
(2)設,求關于
的函數
在
時的值域
的表達式;
(3)若關于的不等式
在
時恒成立,求實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】設為坐標原點,動點
在橢圓
上,過
作
軸的垂線,垂足為
,點
滿足
.(Ⅰ)求點
的軌跡方程
;
(Ⅱ)過的直線
與點
的軌跡交于
兩點,過
作與
垂直的直線
與點
的軌跡交于
兩點,求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左焦點
與拋物線
的焦點重合,橢圓
的離心率為
,過點
作斜率不為0的直線
,交橢圓
于
兩點,點
,且
為定值.
(1)求橢圓的方程;
(2)求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在底面是菱形的四棱錐中,
平面
,
,點
分別為
的中點,設直線
與平面
交于點
.
(1)已知平面平面
,求證:
.
(2)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左右焦點分別為
, 若橢圓上一點
滿足
,且橢圓
過點
,過點
的直線
與橢圓
交于兩點
.
(1)求橢圓的方程;
(2)若點是點
在
軸上的垂足,延長
交橢圓
于
,求證:
三點共線.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面
為正方形,平面
底面
,
,點
分別是
的中點.
(Ⅰ)求證: 平面
;
(Ⅱ)求證: 平面
;
(Ⅲ)在棱上求作一點
,使得
,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在中,
,
,
,
是
中點(如圖1).將
沿
折起到圖2中
的位置,得到四棱錐
.
(1)將沿
折起的過程中,
平面
是否成立?并證明你的結論;
(2)若與平面
所成的角為60°,且
為銳角三角形,求平面
和平面
所成角的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com