【題目】已知橢圓Γ:的左,右焦點(diǎn)分別為F1(
,0),F2(
,0),橢圓的左,右頂點(diǎn)分別為A,B,已知橢圓Γ上一異于A,B的點(diǎn)P,PA,PB的斜率分別為k1,k2,滿足
.
(1)求橢圓Γ的標(biāo)準(zhǔn)方程;
(2)若過橢圓Γ左頂點(diǎn)A作兩條互相垂直的直線AM和AN,分別交橢圓Γ于M,N兩點(diǎn),問x軸上是否存在一定點(diǎn)Q,使得∠MQA=∠NQA成立,若存在,則求出該定點(diǎn)Q,否則說明理由.
【答案】(1)(2)存在;定點(diǎn)
【解析】
(1)設(shè),根據(jù)題意可得
,結(jié)合橢圓的方程化簡可得
,再由
即可求解.
(2)根據(jù)設(shè)直線和
的方程分別為
和
,將直線方程與橢圓方程聯(lián)立求出
、
,設(shè)
軸上存在一定點(diǎn)
,使得
成立,則
,利用兩點(diǎn)求斜率化簡即可求得.
解:(1)設(shè),
,
,
則.
橢圓
的標(biāo)準(zhǔn)方程為
.
(2)由(1)可知左頂點(diǎn),且過點(diǎn)
的直線
和
的斜率存在,
設(shè)直線和
的方程分別為
和
,
設(shè),
聯(lián)立,
直線
和橢圓
交于
兩點(diǎn),
,
,
同理.
設(shè)軸上存在一定點(diǎn)
,使得
成立,則
,
,則
,
,
即,解得
.
因此軸上存在一定點(diǎn)
,使得
成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐的底面ABCD是邊長為a的菱形,
面ABCD,
,E,F分別是CD,PC的中點(diǎn).
(1)求證:平面平面PAB;
(2)M是PB上的動點(diǎn),EM與平面PAB所成的最大角為,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某圓柱的高為2,底面周長為16,則其體積為_________,若該圓柱的三視圖如圖所示,圓柱表面上的點(diǎn)M在正視圖上的對應(yīng)點(diǎn)為A,圓柱表面上的點(diǎn)N在側(cè)視圖上的對應(yīng)點(diǎn)為B,則在此圓柱側(cè)面上,從M到N的路徑中,最短路徑的長度為___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,
,
,
,
,直線
與平面
成
角,
為
的中點(diǎn),
,
.
(Ⅰ)若,求證:平面
平面
;
(Ⅱ)若,求直線
與平面
所成角的正弦值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】冠狀病毒是一個(gè)大型病毒家族,已知的有中東呼吸綜合征(MERS)和嚴(yán)重急性呼吸綜合征(SARS)等較嚴(yán)重的疾病,新型冠狀病毒(nCoV)是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,某小區(qū)為進(jìn)一步做好新型冠狀病毒肺炎疫情知識的教育,在小區(qū)內(nèi)開展“新型冠狀病毒防疫安全公益課”在線學(xué)習(xí),在此之后組織了“新型冠狀病毒防疫安全知識競賽”在線活動.已知進(jìn)入決賽的分別是甲、乙、丙、丁四位業(yè)主,決賽后四位業(yè)主相應(yīng)的名次為第1,2,3,4名,該小區(qū)為了提高業(yè)主們的參與度和重視度,邀請小區(qū)內(nèi)的所有業(yè)主在比賽結(jié)束前對四位業(yè)主的名次進(jìn)行預(yù)測,若預(yù)測完全正確將會獲得禮品,現(xiàn)用a,b,c,d表示某業(yè)主對甲、乙、丙、丁四位業(yè)主的名次做出一種等可能的預(yù)測排列,記X=|a﹣1|+|b﹣2|+|c﹣3|+|d﹣4|.
(1)求該業(yè)主獲得禮品的概率;
(2)求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的兩個(gè)頂點(diǎn)坐標(biāo)是
,
,
的周長為
,
是坐標(biāo)原點(diǎn),點(diǎn)
滿足
.
(Ⅰ)求點(diǎn)的軌跡
的方程;
(Ⅱ)設(shè)不過原點(diǎn)的直線與曲線
交于
兩點(diǎn),若直線
的斜率依次成等比數(shù)列,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直三棱柱ABC﹣A1B1C1,E,F分別是棱CC1,AB的中點(diǎn).
(1)證明:CF∥平面AEB1.
(2)若AC=BC=AA1=4,∠ACB=90°,求三棱錐B1﹣ECF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在
處的導(dǎo)數(shù)為
,
,
(1)若不等式對任意
恒成立,求實(shí)數(shù)
的取值范圍.
(2)若在
上有且只有一個(gè)零點(diǎn),求
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com