科目:高中數學 來源: 題型:
已知函數f(x)=x-ln(x+a)在x=1處取得極值.
(1)求實數a的值;
(2)若關于x的方程f(x)+2x=x2+b在[,2]上恰有兩個不相等的實數根,求實數b的取值范圍;
(3)證明: (n∈N,n≥2).參考數據:ln2≈0.6931.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年湖南省、岳陽縣一中高三11月聯考理科數學 題型:解答題
(本小題滿分13分)(第一問8分,第二問5分)
已知函數f(x)=2lnx,g(x)=ax2+3x.
(1)設直線x=1與曲線y=f(x)和y=g(x)分別相交于點P、Q,且曲線y=f(x)和y=g(x)在點P、Q處的切線平行,若方程f(x2+1)+g(x)=3x+k有四個不同的實根,求實數k的取值范圍;
(2)設函數F(x)滿足F(x)+x[f′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分別是函數f(x)與g(x)的導函數;試問是否存在實數a,使得當x∈(0,1]時,F(x)取得最大值,若存在,求出a的取值范圍;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com