【題目】如圖,在四棱錐中,底面
為正方形,
平面
,
,點
分別為
的中點.
(Ⅰ)求證:;
(Ⅱ)求證:平面
;
(Ⅲ)求平面與平面
所成二面角
(銳角)的余弦值.
【答案】(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)
【解析】
(Ⅰ)以為原點,
所在直線分別為
軸、
軸、
軸,再證明
即可.
(Ⅱ)同(Ⅰ),證明與平面
的法向量
垂直即可.
(Ⅲ)分別計算平面與平面
的法向量再求解二面角的夾角余弦值即可.
解:(Ⅰ)因為平面
,所以
,
,且底面
為正方形,
所以.以
為原點,
所在直線分別為
軸、
軸、
軸,建立如圖所示空間直角坐標系
,設
,則
,
,
,
,
,
.
,
,
.
所以.
(Ⅱ)由(Ⅰ)知,,
,
.
且,
所以平面
.
所以是平面
的法向量.
因為,
且平面
,
所以∥平面
.
(Ⅲ)設平面的法向量為
,則
即
令,則
,
.
于是.
平面的法向量為
.
設平面與平面
所成二面角(銳角)
為
,
則.
所以平面與平面
所成二面
角(銳角)的余弦值為
.
科目:高中數學 來源: 題型:
【題目】某城市為了解游客人數的變化規律,提高旅游服務質量,收集并整理了2016年1月至2018年12月期間月接待游客量(單位:萬人)的數據,繪制了下面的折線圖.
根據該折線圖,判斷下列結論:
(1)月接待游客量逐月增加;
(2)年接待游客量逐年增加;
(3)各年的月接待游客量高峰期大致在7,8月;
(4)各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩.
其中正確結論的個數為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ln (x+1)- -x,a∈R.
(1)當a>0時,求函數f(x)的單調區間;
(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的短軸長為2,離心率為
,
,
分別是橢圓的右頂點和下頂點.
(1)求橢圓的標準方程;
(2)已知是橢圓
內一點,直線
與
的斜率之積為
,直線
分別交橢圓于
兩點,記
,
的面積分別為
,
.
①若兩點關于
軸對稱,求直線
的斜率;
②證明:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給定橢圓C:(
),稱圓心在原點O,半徑為
的圓是橢圓C的“衛星圓”.若橢圓C的離心率
,點
在C上.
(1)求橢圓C的方程和其“衛星圓”方程;
(2)點P是橢圓C的“衛星圓”上的一個動點,過點P作直線,
使得
,與橢圓C都只有一個交點,且
,
分別交其“衛星圓”于點M,N,證明:弦長
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓,直線
經過點
,直線
經過點
,直線
直線
,且直線
分別與橢圓
相交于
兩點和
兩點.
(Ⅰ)若分別為橢圓
的左、右焦點,且直線
軸,求四邊形
的面積;
(Ⅱ)若直線的斜率存在且不為0,四邊形
為平行四邊形,求證:
;
(Ⅲ)在(Ⅱ)的條件下,判斷四邊形能否為矩形,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com