日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,其中左焦點F(-2,0).
(1)求橢圓C的方程;
(2)若直線y=x+m與橢圓C交于不同的兩點A,B,且線段的中點M在圓x2+y2=1上,求m的值.
分析:(1)由題意,得
c
a
=
2
2
c=2
a2=b2+c2.
由此能夠得到橢圓C的方程.
(2)設點A、B的坐標分別為(x1,y1),(x2,y2),線段AB的中點為M(x0,y0),由
x2
8
+
y2
4
=1
y=x+m.
消y得,3x2+4mx+2m2-8=0,再由根的判斷式結合題設條件能夠得到m的值.
解答:解:(1)由題意,得
c
a
=
2
2
c=2
a2=b2+c2.

解得
a=2
2
b=2.
∴橢圓C的方程為
x2
8
+
y2
4
=1

(2)設點A、B的坐標分別為(x1,y1),(x2,y2),線段AB的中點為M(x0,y0),
x2
8
+
y2
4
=1
y=x+m.
消y得,3x2+4mx+2m2-8=0,
△=96-8m2>0,∴-2
3
<m<2
3

x0=
x1+x2
2
=-
2m
3

y0=x0+m=
m
3

∵點M(x0,y0)在圓x2+y2=1上,∴(-
2m
3
)2+(
m
3
)2=1
,∴m=±
3
5
5
點評:本題考查橢圓方程的求法和直線與橢圓位置關系的綜合運用,解題時要認真審題,注意挖掘題設中的隱含條件.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
1
2
,且經過點P(1,
3
2
)

(1)求橢圓C的方程;
(2)設F是橢圓C的左焦,判斷以PF為直徑的圓與以橢圓長軸為直徑的圓的位置關系,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的短軸長為2
3
,右焦點F與拋物線y2=4x的焦點重合,O為坐標原點.
(1)求橢圓C的方程;
(2)設A、B是橢圓C上的不同兩點,點D(-4,0),且滿足
DA
DB
,若λ∈[
3
8
1
2
],求直線AB的斜率的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經過點A(1,
3
2
),且離心率e=
3
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)過點B(-1,0)能否作出直線l,使l與橢圓C交于M、N兩點,且以MN為直徑的圓經過坐標原點O.若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•房山區二模)已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的長軸長是4,離心率為
1
2

(Ⅰ)求橢圓方程;
(Ⅱ)設過點P(0,-2)的直線l交橢圓于M,N兩點,且M,N不與橢圓的頂點重合,若以MN為直徑的圓過橢圓C的右頂點A,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的短軸長為2,離心率為
2
2
,設過右焦點的直線l與橢圓C交于不同的兩點A,B,過A,B作直線x=2的垂線AP,BQ,垂足分別為P,Q.記λ=
AP+BQ
PQ
,若直線l的斜率k≥
3
,則λ的取值范圍為
 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日日精品 | 亚洲第一视频 | 日韩不卡av | 精品国产乱码久久久久久久软件 | 视频一二三区 | 久久久久久亚洲精品中文字幕 | 久久99精品国产麻豆婷婷洗澡 | 老牛影视av一区二区在线观看 | 大胆裸体gogo毛片免费看 | 天天插天天射天天干 | 黄色天堂在线观看 | 日韩三级电影在线观看 | 精国产品一区二区三区 | 美女一级毛片 | 99热热热| 免费毛片视频 | 欧美精品影院 | 国产日韩欧美综合 | 久久精品视频7 | a在线免费观看 | 精品久 | 91偷拍精品一区二区三区 | 久久久精彩视频 | 国产一区二区三区四区 | 日本天堂在线 | 国产成人精品免高潮在线观看 | 国产精品久久久久久久久久久久冷 | 久久99精品视频 | 99re在线观看 | 在线欧美视频 | 青青免费视频 | 亚洲视频免费观看 | 日韩午夜 | 亚洲精品乱码久久久久久蜜桃图片 | 久草福利在线视频 | 欧洲色 | 国产男人的天堂 | 精品在线观看av | 黄色成人在线 | 国产天天操 | 亚洲一区在线视频 |