【題目】某市春節期間7家超市的廣告費支出(萬元)和銷售額
(萬元)數據如下:
超市 | A | B | C | D | E | F | G |
廣告費支出 | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
銷售額 | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
(1)若用線性回歸模型擬合與
的關系,求
關于
的線性回歸方程;
(2)用二次函數回歸模型擬合與
的關系,可得回歸方程:
,經計算二次函數回歸模型和線性回歸模型的相關指數
分別約為
和
,請用
說明選擇哪個回歸模型更合適,并用此模型預測超市應支出多少萬元廣告費,能獲得最大的銷售額?最大的銷售額是多少?(精確到個位數)
參數數據及公式:,
,
.
科目:高中數學 來源: 題型:
【題目】在數列中,若
(
,
,
為常數),則
稱為“等方差數列”.下列對“等方差數列”的判斷:
①若是等方差數列,則
是等差數列;
②是等方差數列;
③若是等方差數列,則
(
,
為常數)也是等方差數列.其中正確命題序號為
__________(寫出所有正確命題的序號).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=loga(1+x),g(x)=loga(1-
x),(a>0且a≠1),若h(x)=f(x)-g(x).
(1)求函數h(x)的定義域;
(2)判斷h(x)的奇偶性,并說明理由;
(3)若f(2)=1,求使h(x)>0成立的x的集合.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)當時,求滿足
的
的取值;
(2)若函數是定義在
上的奇函數
①存在,不等式
有解,求
的取值范圍;
②若函數滿足
,若對任意
,不等式
恒成立,求實數
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數是定義在
上的偶函數,且
對任意的
恒成立,且當
時,
.
(1)求證:是以2為周期的函數(不需要證明2是
的最小正周期);
(2)對于整數,當
時,求函數
的解析式;
(3)對于整數,記
在
有兩個不等的實數根},求集合
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某小區抽取50戶居民進行月用電量調查,發現其用電量都在50到350度之間,將用電量的數據繪制成頻率分布直方圖如下.
(1)求頻率分布直方圖中的值并估計這50戶用戶的平均用電量;
(2)若將用電量在區間內的用戶記為
類用戶,標記為低用電家庭,用電量在區間
內的用戶記為
類用戶,標記為高用電家庭,現對這兩類用戶進行問卷調查,讓其對供電服務進行打分,打分情況見莖葉圖:
①從類用戶中任意抽取3戶,求恰好有2戶打分超過85分的概率;
②若打分超過85分視為滿意,沒超過85分視為不滿意,請填寫下面列聯表,并根據列聯表判斷是否有的把握認為“滿意度與用電量高低有關”?
滿意 | 不滿意 | 合計 | |
| |||
| |||
合計 |
附表及公式:
<>0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)判斷函數在區間
上的單調性,并用定義證明;
(2)函數在區間
內是否有零點?若有零點,用“二分法”求零點的近似值(精確度0.3);若沒有零點,說明理由.
(參考數據:,
,
,
,
,
).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com