【題目】設函數f(x)=loga(1+x),g(x)=loga(1-
x),(a>0且a≠1),若h(x)=f(x)-g(x).
(1)求函數h(x)的定義域;
(2)判斷h(x)的奇偶性,并說明理由;
(3)若f(2)=1,求使h(x)>0成立的x的集合.
【答案】(1)(-2,2)
(2) h(x)為奇函數
(3)
【解析】
(1)根據函數定義域的定義,列出使得有意義的條件,即可求解函數的定義域;
(2)根據函數的奇偶性性的定義,即可作出證明,得到函數的奇偶性;
(3)由,求得
,得到函數
的解析式,再由
,得到不等式
,即可求得不等式的解集.
(1)由1+x>0且1-
x>0得-2<x<2,所以函數定義域為(-2,2)
(2)∵對任意的x∈(-2,2),-x∈(-2,2),
所以h(x)為奇函數
(3) f(2)=1,得a=2.此時h(x)=log2(1+x)-log2(1-
x),
由h(x)>0得:1+x>1-
x,所以x>0
又由(1)知 -2<x<2所以0<x<2,x的取值集合為
科目:高中數學 來源: 題型:
【題目】(選修4﹣4:坐標系與參數方程)
已知曲線C1的參數方程為 (t為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=2sinθ.
(1)把C1的參數方程化為極坐標方程;
(2)求C1與C2交點的極坐標(ρ≥0,0≤θ<2π)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數在點
處的切線方程為
.
(1)求函數的解析式;
(2)求函數的單調區間和極值.
【答案】(1);(2)見解析.
【解析】試題分析:(1)根據導數幾何意義得,再與
聯立方程組解得
,
(2)先函數導數,再求導函數零點,列表分析導函數符號變化規律,進而確定單調區間和極值
試題解析:(1),切線為
,即斜率
,縱坐標
即,
,解得
,
解析式
(2)
,定義域為
得到在
單增,在
單減,在
單增
極大值,極小值
.
【題型】解答題
【結束】
20
【題目】如圖:在四棱錐中,底面
為菱形,且
,
底面
,
,
,
是
上點,且
平面
.
(1)求證: ;(2)求三棱錐
的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在框圖中,設x=2,并在輸入框中輸入n=4;ai=i(i=0,1,2,3,4).則此程序執行后輸出的S值為( )
A.26
B.49
C.52
D.98
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題:若關于
的方程
無實數根,則
;命題
:若關于
的方程
有兩個不相等的正實數根,則
.
(1)寫出命題的否命題,并判斷命題
的真假;
(2)判斷命題“且
”的真假,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的兩個焦點分別為
,
,且點
在橢圓
上.
(1)求橢圓的標準方程;
(2)設橢圓的左頂點為
,過點
的直線
與橢圓
相交于異于
的不同兩點
,求
的面積
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某高校在年的自主招生考試成績中隨機抽取
名學生的筆試成績,按成績分組:第
組
,第
組
,第
組
,第
組
,第
組
得到的頻率分布直方圖如圖所示.
(1)分別求第,
,
組的頻率;
(2)若該校決定在筆試成績高的第,
,
組中用分層抽樣抽取
名學生進入第二輪面試,求第
,
,
組每組各抽取多少名學生進入第二輪面試?
(3)在(2)的前提下,學校決定在這名學生中隨機抽取
名學生接受甲考官的面試,求第
組至少有一名學生被甲考官面試的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解籃球愛好者小李的投籃命中率與打籃球時間之間的關系,下表記錄了小李某月1號到5號每天打籃球時間x(單位:小時)與當天投籃命中率y之間的關系:
時間x | 1 | 2 | 3 | 4 | 5 |
命中率y | 0.4 | 0.5 | 0.6 | 0.6 | 0.4 |
小李這5天的平均投籃命中率為 ;用線性回歸分析的方法,預測小李該月6號打6小時籃球的投籃命中率為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com