如圖,四棱錐的底面是正方形,
,點(diǎn)
在棱
上.
(1)求證:平面平面
;
(2)當(dāng),且
時(shí),確定點(diǎn)
的位置,即求出
的值.
(3)在(2)的條件下若F是PD的靠近P的一個(gè)三等分點(diǎn),求二面角A-EF-D的余弦值.
(1)詳見解析;(2) ;(3)
.
解析試題分析:(1)證面面垂直,先證明線面垂直.那么證哪條線垂直哪個(gè)面?因?yàn)锳BCD是正方形, .又由
平面
可得
,所以可證
平面
,從而使問題得證.
(2)設(shè)AC交BD=O.由(1)可得平面
,所以
即為三棱錐的高.由條件易得
.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0c/f/bktbu1.png" style="vertical-align:middle;" />,所以可求出底面的面積.又因?yàn)镻D=2,所以可求出點(diǎn)E到邊PD的距離,從而可確定點(diǎn)E的位置.
(3)在本題中作二面角的平面角較麻煩,故考慮建立空間直角坐標(biāo)系,然后用空間向量求解.
試題解析:(1)證明:四邊形ABCD是正方形ABCD,
.
平面
,
平面
,所以
.
,所以
平面
.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/84/9/wxpfy1.png" style="vertical-align:middle;" />平面,所以平面
平面
.
(2) 設(shè).
,
.
在直角三角形ADB中,DB=PD=2,則PB=中斜邊PB的高h(yuǎn)=
即E為PB的中點(diǎn).
(3) 連接OE,因?yàn)镋為PB的中點(diǎn),所以平面
.以O(shè)為坐標(biāo)原點(diǎn),OC為x軸,OB為y軸,OE為z軸,建立空間直角坐標(biāo)系.
則A(1,0,0), E(0,0,1) ,F(xiàn)(0,-1,) , D(0,-1,0).
平面EFD的法向量為
設(shè)為面AEF的法向量。
令y=1,則
所以二面角A-EF-D的余弦值為
考點(diǎn):1、平面與平面的垂直;2、幾何體的體積;3、二面角.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,底面為直角梯形,
,
垂直于底面
,
分別為
的中點(diǎn).
(1)求證:;
(2)求點(diǎn)到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,底面
為菱形,
,
為
的中點(diǎn).
(1)若,求證:平面
平面
;
(2)點(diǎn)在線段
上,
,試確定
的值,使
平面
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,是以
為直徑的半圓上異于點(diǎn)
的點(diǎn),矩形
所在的平面垂直于該半圓所在平面,且
(Ⅰ).求證:;
(Ⅱ).設(shè)平面與半圓弧的另一個(gè)交點(diǎn)為
,
①.求證://
;
②.若,求三棱錐E-ADF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.
(Ⅰ)證明:AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直線A1C與平面BB1C1C所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖在四棱錐中,底面
是邊長為
的正方形,側(cè)面
底面
,且
,設(shè)
、
分別為
、
的中點(diǎn).
(1)求證://平面
;
(2)求證:面平面
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在等腰梯形中,
是梯形的高,
,
,現(xiàn)將梯形沿
折起,使
,且
,得一簡單組合體
如圖所示,已知
分別為
的中點(diǎn).
(1)求證:平面
;
(2)求證:平面
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com