【題目】如圖,由直三棱柱和四棱錐
構成的幾何體中,
,平面
平面
.
(Ⅰ)求證: ;
(Ⅱ)在線段上是否存在點
,使直線
與平面
所成的角為
?若存在,求
的值,若不存在,說明理由.
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,且過點
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線與圓
相切于點
,且
與橢圓
只有一個公共點
.
①求證: ;
②當為何值時,
取得最大值?并求出最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠家舉行大型的促銷活動,經測算某產品當促銷費用為萬元時,銷售量
萬件滿足
(其中
,
為正常數),現假定生產量與銷售量相等,已知生產該產品
萬件還需投入成本
萬元(不含促銷費用),產品的銷售價格定為
萬元/萬件.
(1)將該產品的利潤萬元表示為促銷費用
萬元的函數;
(2)促銷費用投入多少萬元時,廠家的利潤最大.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)在R上可導,其導函數為f′(x),且函數y=(1-x)f′(x)的圖像如圖所示,則下列結論中一定成立的是( )
A. 函數f(x)有極大值f(2)和極小值f(1) B. 函數f(x)有極大值f(-2)和極小值f(1)
C. 函數f(x)有極大值f(2)和極小值f(-2) D. 函數f(x)有極大值f(-2)和極小值f(2)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,等邊三角形的邊長為
,且其
三個頂點均在拋物線上.
(Ⅰ)求拋物線的方程;
(Ⅱ)設動直線與拋物線
相切于點
,與直線
相交于點.證明以
為直徑的圓恒過
軸上某定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某大型景區有兩條直線型觀光路線,
,
,點
位于
的平分線上,且與頂點
相距1公里.現準備過點
安裝一直線型隔離網
(
分別在
和
上),圍出三角形區域
,且
和
都不超過5公里.設
,
(單位:公里).
(Ⅰ)求的關系式;
(Ⅱ)景區需要對兩個三角形區域,
進行綠化.經測算,
區城每平方公里的綠化費用是
區域的兩倍,試確定
的值,使得所需的總費用最少.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,過拋物線y2=2px(p>0)的焦點F的直線交拋物線于點A,B,交其準線l于點C,若|BC|=2|BF|,且|AF|=3,則此拋物線的方程為( )
A. y2=9x B. y2=6x C. y2=3x D. y2=x
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com