【題目】某物流公司專營從甲地到乙地的貨運業務(貨物全部用統一規格的包裝箱包裝),現統計了最近100天內每天可配送的貨物量,按照可配送貨物量T(單位:箱)分成了以下幾組:,
,
,
,
,
,并繪制了如圖所示的頻率分布直方圖(同一組數據用該組數據的區間中點值作代表,將頻率視為概率).
(1)該物流公司負責人決定用分層抽樣的方法從前3組中隨機抽出11天的數據來分析可配送貨物量少的原因,并從這11天的數據中再抽出3天的數據進行財務分析,求這3天的數據中至少有2天的數據來自這一組的概率.
(2)由頻率分布直方圖可以認為,該物流公司每日的可配送貨物量T(單位:箱)服從正態分布,其中
近似為樣本平均數.
(ⅰ)試利用該正態分布,估計該物流公司2000天內日貨物配送量在區間內的天數(結果保留整數).
(ⅱ)該物流公司負責人根據每日的可配送貨物量為公司裝卸貨物的員工制定了兩種不同的工作獎勵方案.
方案一:直接發放獎金,按每日的可配送貨物量劃分為以下三級:時,獎勵50元;
,獎勵80元;
時,獎勵120元.
方案二:利用抽獎的方式獲得獎金,其中每日的可配送貨物量不低于時有兩次抽獎機會,每日的可配送貨物量低于
時只有一次抽獎機會,每次抽獎的獎金及對應的概率分別為
獎金 | 50 | 100 |
概率 |
小張恰好為該公司裝卸貨物的一名員工,試從數學期望的角度分析,小張選擇哪種獎勵方案對他更有利?
附:若,則
,
.
【答案】(1)(2)(ⅰ)
天(ⅱ)小張選擇方案二更有利
【解析】
(1)由分層抽樣知識可知,這11天中前3組的數據分別有1個,4個,6個,即可求得相應的概率;
(2)(ⅰ)由,可得
的值,得到日貨物配送量在區間
內的天數;(ⅱ)由
,方案一,設小張每日可獲得的獎金為
的可能取值,求得期望值;方案二,設小張每日可獲得的獎金為
的所有可能取值,求得相應的概率,得出分布列,利用公式求得數學期望,比較兩個期望值的大小,即可求解.
(1)由分層抽樣知識可知,這11天中前3組的數據分別有1個,4個,6個,
所以至少有2天的數據來自這一組的概率概率為
.
(2)(ⅰ)由題得,
所以.
故2000天內日貨物配送量在區間內的天數為
.
(ⅱ)易知.
對于方案一,設小張每日可獲得的獎金為元,則
的可能取值為50,80,120,
其對應的概率分別為0.25,0.6,0.15,
故.
對于方案二,設小張每日可獲得的獎金為元,則
的所有可能取值為50,100,150,200,
故,
,
,
.
所以的分布列為
50 | 100 | 150 | 200 | |
所以.
因為,
所以從數學期望的角度看,小張選擇方案二更有利.
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線
的參數方程為
(
為參數),在以坐標原點為極點,
軸正半軸為極軸的極坐標系中,曲線
的方程為
.
(1)求曲線的直角坐標方程;
(2)設曲線與直線
交于點
,點
的坐標為(3,1),求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,
為橢圓
的左、右頂點,
為其右焦點,
是橢圓
上異于
,
的動點,且
面積的最大值為
.
(1)求橢圓的方程及離心率;
(2)直線與橢圓在點
處的切線交于點
,當點
在橢圓上運動時,求證:以
為直徑的圓與直線
恒相切.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知曲線在平面直角坐標系
下的參數方程為
(
為參數),以坐標原點
為極點,以
軸正半軸為極軸,建立極坐標系.
(1)求曲線的普通方程及極坐標方程;
(2)直線的極坐標方程是
,射線
:
與曲線
交于點
與直線
交于點
,求線段
的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程為
為參數且
,
,
,曲線
的參數方程為
為參數),以
為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求的普通方程及
的直角坐標方程;
(2)若曲線與曲線
分別交于點
,
,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在邊長為2的等邊三角形中,點
分別是邊
上的點,滿足
且
,(
),將
沿直線
折到
的位置.在翻折過程中,下列結論不成立的是( )
A.在邊上存在點
,使得在翻折過程中,滿足
平面
B.存在,使得在翻折過程中的某個位置,滿足平面
平面
C.若,當二面角
為直二面角時,
D.在翻折過程中,四棱錐體積的最大值記為
,
的最大值為
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖①:在平行四邊形中,
,
,將
沿對角線
折起,使
,連結
,得到如圖②所示三棱錐
.
(1)證明:平面
;
(2)若,二面角
的平面角的正切值為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
在某次考試中,從甲乙兩個班各抽取10名學生的數學成績進行統計分析,兩個班成績的莖葉圖如圖所示,成績不小于90分的為及格.
(1)用樣本估計總體,請根據莖葉圖對甲乙兩個班級的成績進行比較.
(2)求從甲班10名學生和乙班10名學生中各抽取一人,已知有人及格的條件下乙班同學不及格的概率;
(3)從甲班10人中抽取一人,乙班10人中抽取二人,三人中及格人數記為X,求X的分布列和期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】教材曾有介紹:圓上的點
處的切線方程為
。我們將其結論推廣:橢圓
上的點
處的切線方程為
,在解本題時可以直接應用。已知,直線
與橢圓
有且只有一個公共點.
(1)求的值;
(2)設為坐標原點,過橢圓
上的兩點
、
分別作該橢圓的兩條切線
、
,且
與
交于點
。當
變化時,求
面積的最大值;
(3)在(2)的條件下,經過點作直線
與該橢圓
交于
、
兩點,在線段
上存在點
,使
成立,試問:點
是否在直線
上,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com