已知橢圓中心在原點(diǎn),焦點(diǎn)在軸上,焦距為2,離心率為
(1)求橢圓的方程;
(2)設(shè)直線經(jīng)過點(diǎn)
(0,1),且與橢圓交于
兩點(diǎn),若
,求直線
的方程.
(1);(2)
或
.
解析試題分析:本題主要考查橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線的方程等基礎(chǔ)知識,考查用代數(shù)法研究圓錐曲線的性質(zhì),考查運(yùn)算求解能力、綜合分析和解決問題的能力.第一問,先利用橢圓的焦距、離心率求出基本量,寫出橢圓方程;第二問,由于直線經(jīng)過(0,1)點(diǎn),所以先設(shè)出直線方程,與橢圓聯(lián)立,消參得到關(guān)于x的方程,先設(shè)出點(diǎn)坐標(biāo),通過方程得到兩根之和、兩根之積,再由
,得出
,聯(lián)立上述表達(dá)式得k的值,從而得到直線方程.
試題解析:(1)設(shè)橢圓方程為,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a0/f/ibuup1.png" style="vertical-align:middle;" />,所以,
所求橢圓方程為 4分
(2)由題得直線的斜率存在,設(shè)直線
方程為
則由得
,
設(shè),則由
得
..8分
又,
所以消去
得
解得
所以直線的方程為
,即
或
12分
考點(diǎn):1.橢圓的標(biāo)準(zhǔn)方程;2.直線方程;3.韋達(dá)定理.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知、
為橢圓
的左、右焦點(diǎn),且點(diǎn)
在橢圓
上.
(1)求橢圓的方程;
(2)過的直線
交橢圓
于
兩點(diǎn),則
的內(nèi)切圓的面積是否存在最大值?
若存在其最大值及此時的直線方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的焦點(diǎn)為
,準(zhǔn)線為
,點(diǎn)
為拋物線C上的一點(diǎn),且
的外接圓圓心到準(zhǔn)線的距離為
.
(I)求拋物線C的方程;
(II)若圓F的方程為,過點(diǎn)P作圓F的2條切線分別交
軸于點(diǎn)
,求
面積的最小值時
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線關(guān)于軸對稱,它的頂點(diǎn)在坐標(biāo)原點(diǎn),點(diǎn)P(1,2),
,
均在拋物線上.
(1)求該拋物線方程;
(2)若AB的中點(diǎn)坐標(biāo)為,求直線AB方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)已知定點(diǎn)、
,動點(diǎn)N滿足
(O為坐標(biāo)原點(diǎn)),
,
,
,求點(diǎn)P的軌跡方程.
(2)如圖,已知橢圓的上、下頂點(diǎn)分別為
,點(diǎn)
在橢圓上,且異于點(diǎn)
,直線
與直線
分別交于點(diǎn)
,
(ⅰ)設(shè)直線的斜率分別為
、
,求證:
為定值;
(ⅱ)當(dāng)點(diǎn)運(yùn)動時,以
為直徑的圓是否經(jīng)過定點(diǎn)?請證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,直線l與拋物線y2=4x相交于不同的A、B兩點(diǎn).
(1)如果直線l過拋物線的焦點(diǎn),求·
的值;
(2)如果·
=-4,證明直線l必過一定點(diǎn),并求出該定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在
軸上的拋物線過點(diǎn)
.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若拋物線與直線交于
、
兩點(diǎn),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率
,連接橢圓的四個頂點(diǎn)得到的菱形的面積為4.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓相交于不同的兩點(diǎn)A,B。已知點(diǎn)A的坐標(biāo)為
。若
,求直線
的傾斜角。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)拋物線的焦點(diǎn)為
,準(zhǔn)線為
,
,以
為圓心的圓
與
相切于點(diǎn)
,
的縱坐標(biāo)為
,
是圓
與
軸除
外的另一個交點(diǎn).
(I)求拋物線與圓
的方程;
( II)已知直線,
與
交于
兩點(diǎn),
與
交于點(diǎn)
,且
, 求
的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com