【題目】已知命題:“若,
為異面直線,平面
過直線
且與直線
平行,則直線
與平面
的距離等于異面直線
,
之間的距離”為真命題.根據(jù)上述命題,若
,
為異面直線,且它們之間的距離為
,則空間中與
,
均異面且距離也均為
的直線
的條數(shù)為( )
A.0條B.1條C.多于1條,但為有限條D.無數(shù)多條
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)綠色出行,某市在推出“共享單車”后,又推出“新能源分時(shí)租賃汽車”.其中一款新能源分時(shí)租賃汽車,每次租車收費(fèi)的標(biāo)準(zhǔn)由兩部分組成:①根據(jù)行駛里程數(shù)按1元/公里計(jì)費(fèi);②行駛時(shí)間不超過分時(shí),按
元/分計(jì)費(fèi);超過
分時(shí),超出部分按
元/分計(jì)費(fèi).已知王先生家離上班地點(diǎn)
公里,每天租用該款汽車上、下班各一次.由于堵車、紅綠燈等因素,每次路上開車花費(fèi)的時(shí)間
(分)是一個(gè)隨機(jī)變量.現(xiàn)統(tǒng)計(jì)了
次路上開車花費(fèi)時(shí)間,在各時(shí)間段內(nèi)的頻數(shù)分布情況如下表所示:
時(shí)間 | ||||
頻數(shù) |
將各時(shí)間段發(fā)生的頻率視為概率,每次路上開車花費(fèi)的時(shí)間視為用車時(shí)間,范圍為分.(1)寫出王先生一次租車費(fèi)用
(元)與用車時(shí)間
(分)的函數(shù)關(guān)系式;(2)若王先生一次開車時(shí)間不超過
分為“路段暢通”,設(shè)
表示3次租用新能源分時(shí)租賃汽車中“路段暢通”的次數(shù),求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù),給出以下四個(gè)命題:(1)當(dāng)
時(shí),
單調(diào)遞減且沒有最值;(2)方程
一定有實(shí)數(shù)解;(3)如果方程
(
為常數(shù))有解,則解得個(gè)數(shù)一定是偶數(shù);(4)
是偶函數(shù)且有最小值.其中假命題的序號是____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:1(a>b>0)的左右焦點(diǎn)分別為F1,F2,離心率為
,A為橢圓C上一點(diǎn),且AF2⊥F1F2,且|AF2|
.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的左右頂點(diǎn)為A1,A2,過A1,A2分別作x軸的垂線 l1,l2,橢圓C的一條切線l:y=kx+m(k≠0)與l1,l2交于M,N兩點(diǎn),試探究是否為定值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓與長軸是短軸兩倍的橢圓
:
相切于點(diǎn)
(1)求橢圓與圓
的方程;
(2)過點(diǎn)引兩條互相垂直的兩直線
與兩曲線分別交于點(diǎn)
與點(diǎn)
(均不重合).若
為橢圓上任一點(diǎn),記點(diǎn)
到兩直線的距離分別為
,求
的最大值,并求出此時(shí)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的最小正周期并求出單調(diào)遞增區(qū)間;
(2)在中,角A,B,C的對邊分別是a,b,c,且滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前
項(xiàng)和為
,且
.
(1)求出,
,
的值,并求出
及數(shù)列
的通項(xiàng)公式;
(2)設(shè),求數(shù)列
的前
項(xiàng)和
;
(3)設(shè),在數(shù)列
中取出
(
且
)項(xiàng),按照原來的順序排列成一列,構(gòu)成等比數(shù)列
,若對任意的數(shù)列
,均有
,試求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若在區(qū)間
內(nèi)有且只有一個(gè)實(shí)數(shù)
,使得
成立,則稱函數(shù)
在區(qū)間
內(nèi)具有唯一零點(diǎn).
(1)判斷函數(shù)在區(qū)間
內(nèi)是否具有唯一零點(diǎn),說明理由:
(2)已知向量,
,
,證明
在區(qū)間
內(nèi)具有唯一零點(diǎn).
(3)若函數(shù)在區(qū)間
內(nèi)具有唯一零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)時(shí),若函數(shù)
的圖象與
的圖象有且只有一個(gè)交點(diǎn),則正實(shí)數(shù)
的取值范圍是( )
A.B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com