【題目】如圖,圓與長軸是短軸兩倍的橢圓
:
相切于點
(1)求橢圓與圓
的方程;
(2)過點引兩條互相垂直的兩直線
與兩曲線分別交于點
與點
(均不重合).若
為橢圓上任一點,記點
到兩直線的距離分別為
,求
的最大值,并求出此時
的坐標.
科目:高中數學 來源: 題型:
【題目】如圖, 是邊長為
的正方形,平面
平面
,
,
,
,
.
(1)求證:面面
;
(2)求直線與平面
所成角的正弦值;
(3)在線段上是否存在點
,使得二面角
的大小為
?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知.
(1)當時,解不等式
;
(2)若關于的方程
的解集中恰好有一個元素,求實數
的值;
(3)設,若對任意
,函數
在區間
上的最大值與最小值的差不超過
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C的參數方程為(t為參數),以原點O為極點,x軸的非負半軸為極軸建立極坐標系,過極點的兩直線l1,l2相互垂直,與曲線C分別相交于A,B兩點(不同于點O),且l1的傾斜角為
.
(1)求曲線C的極坐標方程和直線l2的直角坐標方程;
(2)求△OAB的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題:“若,
為異面直線,平面
過直線
且與直線
平行,則直線
與平面
的距離等于異面直線
,
之間的距離”為真命題.根據上述命題,若
,
為異面直線,且它們之間的距離為
,則空間中與
,
均異面且距離也均為
的直線
的條數為( )
A.0條B.1條C.多于1條,但為有限條D.無數多條
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設,
,其中m是不等于零的常數,
(1)時,直接寫出
的值域;
(2)求的單調遞增區間;
(3)已知函數(
),定義:
(
),
(
).其中,
表示函數
在D上的最小值,
表示函數
在D上的最大值.例如:
,
,則
,
,
,
.當
時,設
,不等式
恒成立,求t,n的取值范圍;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,取同離心率的兩個橢圓成軸對稱內外嵌套得一個標志,為美觀考慮,要求圖中標記的①、②、③)三個區域面積彼此相等.(已知:橢圓面積為圓周率與長半軸、短半軸長度之積,即橢圓面積為
)
(1)求橢圓的離心率的值;
(2)已知外橢圓長軸長為6,用直角角尺兩條直角邊內邊緣與外橢圓相切,移動角尺繞外橢圓一周,得到由點M生成的軌跡將兩橢圓圍起來,整個標志完成.請你建立合適的坐標系,求出點M的軌跡方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的周期為
,圖象的一個對稱中心為
.將函數
圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再將所得到的圖象向右平移
個單位長度后得到函數
的圖象.
(1)求函數與
的解析式.
(2)定義:當函數取得最值時,函數圖象上對應的點稱為函數的最值點,如果函數的圖象上至少有一個最大值點和一個最小值點在圓
的內部或圓周上,求k的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com