【題目】已知,坐標平面上一點P滿足:
的周長為6,記點P的軌跡為
.拋物線
以
為焦點,頂點為坐標原點O.
(Ⅰ)求,
的方程;
(Ⅱ)若過的直線
與拋物線
交于
兩點,問在
上且在直線
外是否存在一點
,使直線
的斜率依次成等差數列,若存在,請求出點
的坐標,若不存在,請說明理由.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分別是AP、AD的中點,求證:
(1)直線EF∥平面PCD;
(2)平面BEF⊥平面PAD.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列的前
項和為
,滿足
與
的等差中項為
(
).
(1)求數列的通項公式;
(2)是否存在正整數,是不等式
(
)恒成立,若存在,求出
的最大值;若不存在,請說明理由.
(3)設
,若集合
恰有
個元素,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四邊形是正四棱柱
的一個截面,此截面與棱
交于點
,
,其中
分別為棱
上一點.
(1)證明:平面平面
;
(2)為線段
上一點,若四面體
與四棱錐
的體積相等,求
的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:x2+y2+2x﹣4y+3=0.
(1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程;
(2)從圓C外一點P(x1 , y1)向該圓引一條切線,切點為M,O為坐標原點,且有|PM|=|PO|,求使得|PM|取得最小值的點P的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地政府為了對房地產市場進行調控決策,統計部門對外來人口和當地人口進行了買房的心理預期調研,用簡單隨機抽樣的方法抽取了110人進行統計,得到如下列聯表(不全):
已知樣本中外來人口數與當地人口數之比為3:8.
(1)補全上述列聯表;
(2)從參與調研的外來人口中用分層抽樣方法抽取6人,進一步統計外來人口的某項收入指標,若一個買房人的指標記為3,一個猶豫人的指標記為2,一個不買房人的指標記為1,現在從這6人中再隨機選取3人,用表示這3人指標之和,求
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,四棱錐P﹣ABCD的底面ABCD是邊長為1的菱形,∠BCD=60°,E是CD的中點,PA⊥底面ABCD,PA= .
(Ⅰ)證明:平面PBE⊥平面PAB;
(Ⅱ)求二面角A﹣BE﹣P的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖(1)五邊形中,
,將
沿
折到
的位置,得到四棱錐
,如圖(2),點
為線段
的中點,且
平面
.
(1)求證:平面平面
;
(2)若四棱柱的體積為
,求四面體
的體積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com