科目:高中數學 來源:成功之路·突破重點線·數學(學生用書) 題型:044
求下列函數的最小正周期
(1)y=tan-
;
(2)y=2|sin(4x-)|;
(3)y=(asin+cosx)2(a∈R);
(4)y=2cosxsin(x+)-
sin2x+sinxcosx
查看答案和解析>>
科目:高中數學 來源:新課程高中數學疑難全解 題型:044
求下列函數的最小正周期:
(1)y=tan x-cot x:
(2)y=2cos xsin(x+)-
sin2x+sin xcos x;
(3)y=;
(4)y=2|sin(4x-)|.
查看答案和解析>>
科目:高中數學 來源:高考總復習全解 數學 一輪復習·必修課程 (人教實驗版) B版 人教實驗版 B版 題型:044
求下列函數的周期:
(1)y=sin x+cos x;
(2)y=sin(2x+)cos 2x;
(3)y=cos24x;
(4)y=tan x-cot x.
查看答案和解析>>
科目:高中數學 來源:2008年高考沖刺解答題突破、數學 題型:044
已知函數y=f(x)對于任意(k∈Z),都有式子f(a-tanθ)=cotθ-1成立(其中a為常數).
(Ⅰ)求函數y=f(x)的解析式;
(Ⅱ)利用函數y=f(x)構造一個數列,方法如下:
對于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述構造過程中,如果xi(i=1,2,3,…)在定義域中,那么構造數列的過程繼續下去;如果xi不在定義域中,那么構造數列的過程就停止.
(ⅰ)如果可以用上述方法構造出一個常數列,求a的取值范圍;
(ⅱ)是否存在一個實數a,使得取定義域中的任一值作為x1,都可用上述方法構造出一個無窮數列{xn}?若存在,求出a的值;若不存在,請說明理由;
(ⅲ)當a=1時,若x1=-1,求數列{xn}的通項公式.
查看答案和解析>>
科目:高中數學 來源:2012年人教A版高中數學必修四1.4三角函數的圖像與性質練習卷(四)(解析版) 題型:解答題
求下列函數的單調區間:
(1)y=tan; (2)y=
tan2x+1;
(3)y=3tan.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com